\(\int_0^4\dfrac{\left(x+1\right)e^x}{\sqrt{2x+1}}dx=ae^b+c.\)Tính S=a+b+c.
Help me please...
1/ I=\(\int_{-2}^2\left|x^2-1\right|dx\)
2/ I= \(\int_1^e\sqrt{x}.lnxdx\)
3/ I= \(\int_0^{\dfrac{\pi}{2}}\left(e^{sinx}+cosx\right)cosxdx\)
4/ I= \(\int_0^{\dfrac{pi}{2}}\dfrac{sin2x}{\sqrt{cos^2x+4sin^2x}}dx\)
5/ I= \(\int_0^{\dfrac{\pi}{4}}\sqrt{2}cos\sqrt{x}dx\)
6/ I= \(\int_1^{\sqrt{e}}\dfrac{1}{x\sqrt{1-ln^2x}}dx\)
7/ I= \(\int_{-\dfrac{\pi}{4}}^{\dfrac{\pi}{4}}\dfrac{sin^6x+cos^6x}{6^x+1}dx\)
Nhìn đề dữ dội y hệt cr của tui z :( Để làm từ từ
Lập bảng xét dấu cho \(\left|x^2-1\right|\) trên đoạn \(\left[-2;2\right]\)
x | -2 | -1 | 1 | 2 |
\(x^2-1\) | 0 | 0 |
\(\left(-2;-1\right):+\)
\(\left(-1;1\right):-\)
\(\left(1;2\right):+\)
\(\Rightarrow I=\int\limits^{-1}_{-2}\left|x^2-1\right|dx+\int\limits^1_{-1}\left|x^2-1\right|dx+\int\limits^2_1\left|x^2-1\right|dx\)
\(=\int\limits^{-1}_{-2}\left(x^2-1\right)dx-\int\limits^1_{-1}\left(x^2-1\right)dx+\int\limits^2_1\left(x^2-1\right)dx\)
\(=\left(\dfrac{x^3}{3}-x\right)|^{-1}_{-2}-\left(\dfrac{x^3}{3}-x\right)|^1_{-1}+\left(\dfrac{x^3}{3}-x\right)|^2_1\)
Bạn tự thay cận vô tính nhé :), hiện mình ko cầm theo máy tính
2/ \(I=\int\limits^e_1x^{\dfrac{1}{2}}.lnx.dx\)
\(\left\{{}\begin{matrix}u=lnx\\dv=x^{\dfrac{1}{2}}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}du=\dfrac{dx}{x}\\v=\dfrac{2}{3}.x^{\dfrac{3}{2}}\end{matrix}\right.\)
\(\Rightarrow I=\dfrac{2}{3}.x^{\dfrac{3}{2}}.lnx|^e_1-\dfrac{2}{3}\int\limits^e_1x^{\dfrac{1}{2}}.dx\)
\(=\dfrac{2}{3}.x^{\dfrac{3}{2}}.lnx|^e_1-\dfrac{2}{3}.\dfrac{2}{3}.x^{\dfrac{3}{2}}|^e_1=...\)
3/ \(I=\int\limits^{\dfrac{\pi}{2}}_0e^{\sin x}.\cos x.dx+\int\limits^{\dfrac{\pi}{2}}_0\cos^2x.dx\)
Xét \(A=\int\limits^{\dfrac{\pi}{2}}_0e^{\sin x}.\cos x.dx\)
\(t=\sin x\Rightarrow dt=\cos x.dx\Rightarrow A=\int\limits^{\dfrac{\pi}{2}}_0e^t.dt=e^{\sin x}|^{\dfrac{\pi}{2}}_0\)
Xét \(B=\int\limits^{\dfrac{\pi}{2}}_0\cos^2x.dx\)
\(=\int\limits^{\dfrac{\pi}{2}}_0\dfrac{1+\cos2x}{2}.dx=\dfrac{1}{2}.\int\limits^{\dfrac{\pi}{2}}_0dx+\dfrac{1}{2}\int\limits^{\dfrac{\pi}{2}}_0\cos2x.dx\)
\(=\dfrac{1}{2}x|^{\dfrac{\pi}{2}}_0+\dfrac{1}{2}.\dfrac{1}{2}\sin2x|^{\dfrac{\pi}{2}}_0\)
I=A+B=...
Tính các tích phân sau:
a) \(\int_0^1x^3\sqrt{1-x^2}dx\)
b) \(\int_1^2\dfrac{dx}{x^2-2x+2}\)
c) \(\int_1^2\dfrac{dx}{\sqrt{4-x^2}}\)
d) \(\int_0^1x\sqrt{x^2+1}dx\)
a.
Đặt \(\sqrt{1-x^2}=u\Rightarrow x^2=1-u^2\Rightarrow xdx=-udu\)
\(\left\{{}\begin{matrix}x=0\Rightarrow u=1\\x=1\Rightarrow u=0\end{matrix}\right.\)
\(\Rightarrow I=\int\limits^0_1\left(1-u^2\right).u.\left(-udu\right)=\int\limits^1_0\left(u^2-u^4\right)du=\left(\dfrac{1}{3}u^3-\dfrac{1}{5}u^5\right)|^1_0\)
\(=\dfrac{2}{15}\)
b.
\(\int\limits^2_1\dfrac{dx}{x^2-2x+2}=\int\limits^2_1\dfrac{dx}{\left(x-1\right)^2+1}\)
Đặt \(x-1=tanu\Rightarrow dx=\dfrac{1}{cos^2u}du\)
\(\left\{{}\begin{matrix}x=1\Rightarrow u=0\\x=2\Rightarrow u=\dfrac{\pi}{4}\end{matrix}\right.\)
\(\Rightarrow I=\int\limits^{\dfrac{\pi}{4}}_0\dfrac{1}{tan^2u+1}.\dfrac{1}{cos^2u}du=\int\limits^{\dfrac{\pi}{4}}_0\dfrac{cos^2u}{cos^2u}du=\int\limits^{\dfrac{\pi}{4}}_0du\)
\(=u|^{\dfrac{\pi}{4}}_0=\dfrac{\pi}{4}\)
c.
\(\int\limits^2_1\dfrac{dx}{\sqrt{4-x^2}}\)
Đặt \(x=2sinu\Rightarrow dx=2cosu.du\)
\(\left\{{}\begin{matrix}x=1\Rightarrow u=\dfrac{\pi}{6}\\x=2\Rightarrow u=\dfrac{\pi}{2}\end{matrix}\right.\)
\(I=\int\limits^{\dfrac{\pi}{2}}_{\dfrac{\pi}{6}}\dfrac{2cosu.du}{\sqrt{4-4sin^2u}}=\int\limits^{\dfrac{\pi}{2}}_{\dfrac{\pi}{6}}\dfrac{2cosu.du}{2cosu}=\int\limits^{\dfrac{\pi}{2}}_{\dfrac{\pi}{6}}du\)
\(=u|^{\dfrac{\pi}{2}}_{\dfrac{\pi}{6}}=\dfrac{\pi}{3}\)
1)\(\int\sqrt{\frac{1-\sqrt{x}}{1+\sqrt{x}}}dx\)
2)\(\int\frac{dx}{\left(e^x+1\right)\left(x^2+1\right)}\)
3)\(\int\frac{1+2x\sqrt{1-x^2}+2x^2}{1+x+\sqrt{1+x^2}}\)dx
4)\(\int\frac{sin^6x+c\text{os}^6x}{1+6^x}dx\)
5)\(\int_0^{\frac{\pi}{2}}\frac{\sqrt{c\text{os}x}}{\sqrt{s\text{inx}}+\sqrt{c\text{os}x}}dx\)
6)\(\int\frac{x^4}{2^x+1}dx\)
7)\(\int_0^{\frac{\pi^2}{4}}sin\sqrt{x}dx\)
8)\(\int\sqrt[6]{1-c\text{os}^3x}.s\text{inx}.c\text{os}^5xdx\)
9)\(\int\sqrt{\frac{1}{4x}+\frac{\sqrt{x}+e^x}{\sqrt{x}.e^x}}dx\)
10)\(\int\frac{c\text{os}x+s\text{inx}}{\left(e^xs\text{inx}+1\right)s\text{inx}}dx\)
Tính (trình bày cách giải ln nka):
a) \(\int_{\dfrac{\pi}{6}}^{\dfrac{\pi}{3}}\dfrac{1}{cos^4x}dx\)
b) \(\int_0^1\dfrac{\left(x+1\right)^2}{x^2+1}dx\)
c)\(\int_1^2\dfrac{x^2+2lnx}{x}dx\)
d) \(\int_1^2\dfrac{x^2+3x+1}{x^2+x}dx\)
e) \(\int_0^33x\left(x+\sqrt{x^2+16}\right)dx\)
Câu a)
\(\int \frac{1}{\cos^4x}dx=\int \frac{\sin ^2x+\cos^2x}{\cos^4x}dx=\int \frac{\sin ^2x}{\cos^4x}dx+\int \frac{1}{\cos^2x}dx\)
Xét \(\int \frac{1}{\cos^2x}dx=\int d(\tan x)=\tan x+c\)
Xét \(\int \frac{\sin ^2x}{\cos^4x}dx=\int \frac{\tan ^2x}{\cos^2x}dx=\int \tan^2xd(\tan x)=\frac{\tan ^3x}{3}+c\)
Vậy :
\(\int \frac{1}{\cos ^4x}dx=\frac{\tan ^3x}{3}+\tan x+c\)
\(\Rightarrow \int ^{\frac{\pi}{3}}_{\frac{\pi}{6}}\frac{dx}{\cos^4 x}=\)\(\left.\begin{matrix} \frac{\pi}{3}\\ \frac{\pi}{6}\end{matrix}\right|\left ( \frac{\tan ^3 x}{3}+\tan x+c \right )=\frac{44}{9\sqrt{3}}\)
Câu b)
\(\int \frac{(x+1)^2}{x^2+1}dx=\int \frac{x^2+1+2x}{x^2+1}dx=\int dx+\int \frac{2xdx}{x^2+1}\)
\(=x+c+\int \frac{d(x^2+1)}{x^2+1}=x+\ln (x^2+1)+c\)
Do đó:
\(\int ^{1}_{0}\frac{(x+1)^2}{x^2+1}dx=\left.\begin{matrix} 1\\ 0\end{matrix}\right|(x+\ln (x^2+1)+c)=\ln 2+1\)
Câu c)
\(\int \frac{x^2+2\ln x}{x}dx=\int xdx+2\int \frac{2\ln x}{x}dx\)
\(=\frac{x^2}{2}+c+2\int \ln xd(\ln x)\)
\(=\frac{x^2}{2}+c+\ln ^2x\)
\(\Rightarrow \int ^{2}_{1}\frac{x^2+2\ln x}{x}dx=\left.\begin{matrix} 2\\ 1\end{matrix}\right|\left ( \frac{x^2}{2}+\ln ^2x +c \right )=\frac{3}{2}+\ln ^22\)
Câu d)
\(\int^{2}_{1} \frac{x^2+3x+1}{x^2+x}dx=\int ^{2}_{1}dx+\int ^{2}_{1}\frac{2x+1}{x^2+x}dx\)
\(=\left.\begin{matrix} 2\\ 1\end{matrix}\right|x+\int ^{2}_{1}\frac{d(x^2+x)}{x^2+x}=1+\left.\begin{matrix} 2\\ 1\end{matrix}\right|\ln |x^2+x|=1+\ln 6-\ln 2\)
\(=1+\ln 3\)
Câu e)
Xét \(\int 3x(x+\sqrt{x^2+16})dx=\int 3x^2dx+\int 3x\sqrt{x^2+16}dx\)
Có:
\(\int 3x^2dx=x^3+c\)
\(\int 3x\sqrt{x^2+16}dx=\frac{3}{2}\int \sqrt{x^2+16}d(x^2+16)\)
\(=\sqrt{(x^2+16)^3}+c\)
Do đó: \(\int 3x(x+\sqrt{x^2+16})dx=x^3+\sqrt{(x^2+16)^3}+c\)
\(\Rightarrow \int ^{3}_{0}3x(x+\sqrt{x^2+16})dx=\left.\begin{matrix} 3\\ 0\end{matrix}\right|(x^3+\sqrt{(x^2+16)^3}+c)=88\)
1.\(\int_0^{\dfrac{\pi}{4}}\dfrac{\sin2x}{\sqrt{1+\cos^4x}}dx\)
2.\(\int_0^{ln3}\dfrac{e^x}{\sqrt{e^x+1}+1}dx\)
3.\(\int_1^2\dfrac{3x+1}{\sqrt{x^2+3x+9}}dx\)
4.\(\int\limits^{\dfrac{\pi}{3}}_{-\dfrac{\pi}{3}}\sin x\sqrt{3+\cos^6x}dx\)
1) \(\int ln^3xdx\)
2) \(\int_0^1\left(x+sin^2x\right)c\text{os}xdx\)
3)\(\int x\left(e^{2x}+\sqrt[3]{x+1}\right)dx\)
Câu 1)
\(I=\int \ln ^3 xdx\). Đặt \(\left\{\begin{matrix} u=\ln ^3x\\ dv=dx\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=\frac{3\ln ^2x}{x}dx\\ v=x\end{matrix}\right.\)
\(\Rightarrow I=x\ln ^3x-3\int \ln^2xdx\)
Tiếp tục nguyên hàm từng phần cho \(\int \ln ^2xdx\) như trên, ta suy ra:
\(\int\ln ^2xdx=x\ln^2x-2\int \ln x dx\).
Tiếp tục nguyên hàm từng phần cho \(\int \ln xdx\Rightarrow \int \ln xdx=x\ln x-x+c\)
Do đó mà \(I=x\ln ^3x-3(x\ln^2x-2x\ln x+2x)+c\)
\(\Leftrightarrow I=x\ln^3x-3x\ln^2x+6x\ln x-6x+c\)
Câu 2)
\(I=\int ^{1}_{0}(x+\sin ^2x)\cos x dx=\int ^{1}_{0}x\cos xdx+\int ^{1}_{0}\sin^2x\cos xdx\)
Đặt \(\left\{\begin{matrix} u=x\\ dv=\cos xdx\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=dx\\ v=\sin x\end{matrix}\right.\Rightarrow \int x\cos xdx=x\sin x-\int \sin xdx=x\sin x+\cos x+c\)
\(\Rightarrow \int ^{1}_{0} x\cos xdx=\sin 1+\cos 1-1\)
Còn \(\int ^{1}_{0}\sin^2x\cos xdx=\int ^{1}_{0}\sin ^2xd(\sin x)=\left.\begin{matrix} 1\\ 0\end{matrix}\right|\frac{\sin ^3x}{3}=\frac{\sin^31}{3}\)
\(\Rightarrow I=-1+\sin 1+\cos 1+\frac{\sin ^3 1}{3}\approx 0,0173\)
Câu 3:
Đối với \(\int xe^{2x}dx\)
\(\left\{\begin{matrix} u=x\\ dv=e^{2x}dx\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=dx\\ v=\int e^{2x}dx=\frac{e^{2x}}{2}\end{matrix}\right.\)
\(\Rightarrow \int xe^{2x}=\frac{1}{2}xe^{2x}-\frac{1}{2}\int e^{2x}dx=\frac{1}{2}xe^{2x}-\frac{1}{4}e^{2x}+c\)
Đối với \(\int x\sqrt[3]{x+1}dx=\int \sqrt[3]{(x+1)^4}dx-\int \sqrt{x+1}dx=\frac{3(x+1)^\frac{7}{3}}{7}-\frac{3}{4}(x+1)^{\frac{4}{3}}+c\)
\(\Rightarrow \int x\sqrt[3]{x+1}dx=\frac{3(x+1)^{\frac{4}{3}}(4x-3)}{28}\)
Do đó mà \(\int x(e^{2x}-\sqrt[3]{x+1})dx=\frac{1}{2}xe^{2x}-\frac{1}{4}e^{2x}+\frac{3(x+1)^{\frac{4}{3}}(4x-3)}{28}+c\)
Câu 1. Cho hàm số chẵn y=f (x) liên tục trên R và \(\int\limits^1_{-1}\dfrac{f\left(2x\right)}{1+2^x}dx=8\).Tính \(\int_0^2f\left(x\right)dx\)
Câu 2:Cho hàm số y=f (x) có đạo hàm và liên tục trên [0;1]và thỏa f(0)=1.\(\int_0^1\left[f'\left(x\right)\left[f^2\left(x\right)\right]+1\right]dx=2\int_0^1\sqrt{f'\left(x\right)}f\left(x\right)dx\).Tính\(\int_0^1\left[f^3\left(x\right)\right]dx\).
1) Tìm nguyên hàm: \(\int\dfrac{dx}{\left(x-1\right)^3\sqrt{x^2+3x+1}}\)
2) Tính tích phân sau: \(\int_0^1\left\{\dfrac{1}{x}\right\}\left(\dfrac{x}{1-x}\right)dx\) (kí hiệu \(\left\{a\right\}\) là phần lẻ của số thực \(a\))
a\(\int_0^1\dfrac{dx}{x^4+4x^2+3}\)
b \(\int\dfrac{x^2-1}{x^4+1}\)
c\(\int\dfrac{dx}{x\left(x^3+1\right)}\)
d \(\int_0^1\dfrac{xdx}{x^4+x^2+1}\)
a/ \(I=\int\limits^1_0\dfrac{1}{\left(x^2+3\right)\left(x^2+1\right)}dx=\dfrac{1}{2}\int\limits^1_0\left(\dfrac{1}{x^2+1}-\dfrac{1}{x^2+3}\right)dx\)
\(=\dfrac{1}{2}\left(arctanx-\dfrac{1}{\sqrt{3}}arctan\dfrac{x}{\sqrt{3}}\right)|^1_0=\dfrac{\pi}{8}-\dfrac{\pi\sqrt{3}}{36}\)
b/ \(I=\int\dfrac{x^2-1}{x^4+1}dx=\int\dfrac{1-\dfrac{1}{x^2}}{x^2+\dfrac{1}{x^2}}dx\)
Đặt \(x+\dfrac{1}{x}=t\Rightarrow\left(1-\dfrac{1}{x^2}\right)dx=dt\) ; \(x^2+\dfrac{1}{x^2}=t^2-2\)
\(\Rightarrow I=\int\dfrac{dt}{t^2-2}=\int\dfrac{dt}{\left(t-\sqrt{2}\right)\left(t+\sqrt{2}\right)}=\dfrac{1}{2\sqrt{2}}\int\left(\dfrac{1}{t-\sqrt{2}}-\dfrac{1}{t+\sqrt{2}}\right)dt\)
\(\Rightarrow I=\dfrac{1}{2\sqrt{2}}ln\left|\dfrac{t-\sqrt{2}}{t+\sqrt{2}}\right|+C=\dfrac{1}{2\sqrt{2}}ln\left|\dfrac{x^2-\sqrt{2}x+1}{x^2+\sqrt{2}x+1}\right|+C\)
c/ \(I=\int\dfrac{dx}{x\left(x^3+1\right)}=\int\dfrac{x^2dx}{x^3\left(x^3+1\right)}\)
Đặt \(x^3+1=t\Rightarrow3x^2dx=dt\)
\(\Rightarrow I=\dfrac{1}{3}\int\dfrac{dt}{\left(t-1\right)t}=\dfrac{1}{3}\int\left(\dfrac{1}{t-1}-\dfrac{1}{t}\right)dt=\dfrac{1}{3}ln\left|\dfrac{t-1}{t}\right|+C\)
\(\Rightarrow I=\dfrac{1}{3}ln\left|\dfrac{x^3}{x^3+1}\right|+C\)
d/ \(I=\int\limits^1_0\dfrac{xdx}{x^4+x^2+1}\)
Đặt \(x^2=t\Rightarrow2xdx=dt\) ; \(\left\{{}\begin{matrix}x=0\Rightarrow t=0\\x=1\Rightarrow t=1\end{matrix}\right.\)
\(I=\dfrac{1}{2}\int\limits^1_0\dfrac{dt}{t^2+t+1}=\dfrac{1}{2}\int\limits^1_0\dfrac{dt}{\left(t+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}=\dfrac{2}{3}\int\limits^1_0\dfrac{dt}{\dfrac{4}{3}\left(t+\dfrac{1}{2}\right)^2+1}\)
Đặt \(t+\dfrac{1}{2}=\dfrac{\sqrt{3}}{2}tanu\Rightarrow dt=\dfrac{\sqrt{3}}{2}.\dfrac{du}{cos^2u}\); \(\left\{{}\begin{matrix}t=0\Rightarrow u=\dfrac{\pi}{6}\\t=1\Rightarrow u=\dfrac{\pi}{3}\end{matrix}\right.\)
\(\Rightarrow I=\dfrac{2}{3}.\dfrac{\sqrt{3}}{2}\int\limits^{\dfrac{\pi}{3}}_{\dfrac{\pi}{6}}\dfrac{du}{cos^2u\left(tan^2u+1\right)}=\dfrac{\sqrt{3}}{3}\int\limits^{\dfrac{\pi}{3}}_{\dfrac{\pi}{6}}du=\dfrac{\pi\sqrt{3}}{18}\)