Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Mai Hương
Xem chi tiết
tth_new
27 tháng 2 2019 lúc 10:01

Do \(8\left(x-2009\right)^2\ge0\Rightarrow25-y^2\ge0\)

\(\Leftrightarrow y^2\le25\).Mà \(y\inℕ\) nên \(0\le y^2\le25\Leftrightarrow0\le y\le5\)

Mà \(8\left(x-2009\right)^2⋮8\Rightarrow25-y^2⋮8\)

\(\Rightarrow y\in\left\{1;3;5\right\}\)

Thay vào tìm x. :) Nhớ đk: \(x,y\inℕ\)

Nguyễn Thái Thịnh
2 tháng 3 2020 lúc 20:44

Ta có: \(25-y^2=8.\left(x-2009\right)^2\)

\(\Rightarrow8.\left(x-2009\right)^2+y^2=25\left(1\right)\)

Vì \(y^2\ge0\)nên \(\left(x-2009\right)^2\le\frac{25}{8}\)

\(\Rightarrow\left(x-2009\right)^2=0\)hoặc \(\left(x-2009\right)^2=1\)

Với \(\left(x-2009\right)^2=1\)thay vào \(\left(1\right)\), ta có:

\(8.1+y^2=25\)

\(\Rightarrow8+y^2=25\)

\(\Rightarrow y^2=17\)( loại )

Với \(\left(x-2009\right)^2=0\)thay vào \(\left(1\right)\), ta có:

\(8.0+y^2=25\)

\(\Rightarrow0+y^2=25\)

\(\Rightarrow y^2=25\)

\(\Rightarrow\orbr{\begin{cases}y=5\\y=-5\end{cases}}\)

Mà \(y\in N\)

\(\Rightarrow y=5,x=2009\)

Vậy \(x=2009,y=5\)

Khách vãng lai đã xóa
Lê Hoàng Tài
Xem chi tiết
Kiệt Nguyễn
9 tháng 7 2019 lúc 19:55

Ta có: \(\left(x-2009\right)^2\ge0\)nên \(8\left(x-2009\right)^2\ge0\)

VP \(\ge0\)nên \(25-y^2\ge0\Leftrightarrow y^2\le25\)(1)

Mặt khác, do \(\left[8\left(x-2009\right)^2\right]⋮2\)nên \(\left(25-y^2\right)⋮2\)

\(\Leftrightarrow y^2\)lẻ \(\Leftrightarrow y\)lẻ (2)

Kết hợp (1), (2) và \(y\inℕ\),ta được: \(y\in\left\{1;3;5\right\}\)(suy ra từ \(y^2\in\left\{1;9;25\right\}\))

*Với y = 1 thì \(25-1^2=8\left(x-2009\right)^2\Leftrightarrow8\left(x-2009\right)^2=24\Leftrightarrow\left(x-2009\right)^2=3\)(loại)

*Với y = 3 thì \(25-3^2=8\left(x-2009\right)^2\Leftrightarrow8\left(x-2009\right)^2=16\Leftrightarrow\left(x-2009\right)^2=2\)(loại)

*Với y = 5 thì \(25-5^2=8\left(x-2009\right)^2\Leftrightarrow8\left(x-2009\right)^2=0\Leftrightarrow\left(x-2009\right)^2=0\)\(\Leftrightarrow x=2009\)

Vậy x = 5 và y = 2009.

Trần Thu Phương
Xem chi tiết
Trần Thùy Dương
15 tháng 8 2018 lúc 22:39

Ta có :

\(25-y^2=8\left(x-2009\right)^2\)

\(\Rightarrow8\left(x-2009\right)^2\le25\)

\(\Leftrightarrow\left(x-2009\right)^2\le\frac{25}{8}\)

\(\Rightarrow0\le\left(x-2009\right)^2\le3\)

\(\Rightarrow\left(x-2009\right)^2\in\left\{0;1\right\}\)

+) Trường hợp 1 :

\(\Rightarrow\left(x-2009\right)^2=0\)

\(\Rightarrow x=2009\)

\(\Rightarrow y=5\)

\(\Leftrightarrow\hept{\begin{cases}x=2009\\y=5\end{cases}}\)

+) Trường hợp 2 :

\(\left(x-2009\right)^2=1\)

\(\Rightarrow x-2009=1\)

\(\Rightarrow x=2010\)

\(\Rightarrow25-y^2=8\)

\(\Rightarrow y^2=17\) (loại)

+) Trường hợp 3 :

\(\left(x-2009\right)^2=1\)

\(\Rightarrow x=2008\)

\(\Rightarrow25-y^2=8\)(loại)

Vậy ......

\(\)

Baozi exo
Xem chi tiết
Nguyễn Thị Trang Nhunh
18 tháng 4 2017 lúc 10:24

o biet

Phan Dang Hai Huy
27 tháng 12 2017 lúc 17:15

khó quá đấy nhé!

yennhi tran
27 tháng 12 2017 lúc 17:18

Y KHÁC +-5

X KHÁC2009

Haruno Sakura
Xem chi tiết
Haruno Sakura
4 tháng 1 2016 lúc 13:46

các bạn xóa máy câu trả lời đó đi 

Haruno Sakura
7 tháng 1 2016 lúc 14:26

Nguyễn Ngọc Quý ơi giúp mình bài này với

ミ★Zero ❄ ( Hoàng Nhật )
22 tháng 4 2021 lúc 20:33

\(25-y^2=8.\left(x-2009\right)^2\)

Đặt \(t=x-2009\left(t\in Z,y\in Z\right)\)

\(\Rightarrow25-y^2=8t^2\Rightarrow y^2=25-8t^2\Rightarrow y^2\le25\)

TH1 : \(y^2=0\Rightarrow t^2=\frac{25}{8}\left(lọai\right)\)

TH2 : \(y^2=4\Rightarrow t^2=\frac{21}{8}\left(lọai\right)\)

TH3 : \(y^2=9\Rightarrow t^2=2\left(lọai\right)\)

TH4 :\(y^2=16\Rightarrow t^2=\frac{9}{8}\left(lọai\right)\)

TH5 : \(y^2=25\Rightarrow t^2=0\Rightarrow x=\pm5;x=2009\)

Vậy \(\left(x;y\right)-\left(2009;\pm5\right)\)

Khách vãng lai đã xóa
KaKaShi_SaSuKe
Xem chi tiết
Nguyễn Như Quỳnh
Xem chi tiết
Trang
22 tháng 1 2017 lúc 18:54

ta có: 25 - y2 = 8(x - 2009)2

=> 8(x - 2009)2 \(\le25\)

=> \(\left(x-2009\right)^2\le\frac{25}{8}\)

mà (x - 2009)2 là số chính phương

=> (x - 2009)2 = { 0;1}

- Nếu (x - 2009)2 = 0

=> x - 2009 = 0 => x = 2009

=> 25 - y2 = 0 => y2 = 25 => y = \(\mp5\)

- Nếu (x - 2009)2 = 1

=> \(\left[\begin{matrix}x-2009=1\\x-2009=-1\end{matrix}\right.\Rightarrow\left[\begin{matrix}x=2010\\x=2008\end{matrix}\right.\)

=> 25 - y2 = 8 => y2 = 17 ( loại vì x;y E Z )

vậy ta có cặp (x;y) là (2009;5) ; (2009;-5) thỏa mãn yêu cầu đề bài

Miko
22 tháng 1 2017 lúc 10:04

25 - y² = 8(x - 2009)²
ta có: VP = 8(x - 2009)² ≥ 0, VP chia hết cho 8 (do x,y thuộc Z)
VT = 25 - y² ≥ 25
→ TH1: 25 - y² = 0 → y = ± 5 → x = 2009 (thỏa mãn)
TH2: 25 - y² = 8 → y = ± √17 (loại)
TH3: 25 - y² = 16 → y = ± 3

→ (x - 2009)² = 2 → x - 2009 = ± √2 (loại)
TH4: 25 - y² = 24 → y = ± 1

→ (x - 2009)² = 3 → x - 2009 = ± √3 (loại)
Vậy x = 2009 và y = \(\pm\)5
Mà x,y thuộc N (tập hợp số tự nhiên) nên

x = 2009 và y = 5

Trần Nguyễn Bảo Quyên
22 tháng 1 2017 lúc 10:51

\(8\left(x-2009\right)^2\ge0\forall x\)

\(\Rightarrow25-y^2\ge0\)

\(y^2\ge0\Rightarrow25-y^2\le25\)

\(\Rightarrow0\le8.\left(x-2009\right)^2\le25\)

\(\Rightarrow0\le\left(x-2009\right)^2\le\frac{25}{8}\)

\(\Rightarrow\left(x-2009\right)^2\le3\)

Do \(x,y\in Z\Rightarrow\left(x-2009\right)^2\in\left\{0;1;2;3\right\}\)

\(\Rightarrow x-2009\in\left\{0;\pm1;\pm2;\pm3\right\}\)

+ Nếu \(x-2009=0\)

\(\Rightarrow x=2009\)

\(25-y^2=0\)

\(\Rightarrow y^2=25\)

\(\Rightarrow y=\sqrt{25}\)

\(\Rightarrow y=5\)

+ Nếu \(x-2009=-1\)

\(\Rightarrow x=2008\)

\(25-y^2=-1\)

\(\Rightarrow y^2=26\)

\(\Rightarrow y=\sqrt{26}\)

+ Nếu \(x-2009=1\)

\(\Rightarrow x=2010\)

\(25-y^2=1\)

\(\Rightarrow y^2=24\)

\(\Rightarrow y=\sqrt{24}\)

+ Nếu \(x-2009=-2\)

\(\Rightarrow x=2007\)

\(25-y^2=-2\)

\(\Rightarrow y^2=27\)

\(\Rightarrow y=\sqrt{27}\)

+ Nếu \(x-2009=2\)

\(\Rightarrow x=2011\)

\(25-y^2=2\)

\(\Rightarrow y^2=23\)

\(\Rightarrow y=\sqrt{23}\)

+ Nếu \(x-2009=-3\)

\(\Rightarrow x=2006\)

\(25-y^2=-3\)

\(\Rightarrow y^2=28\)

\(\Rightarrow y=\sqrt{28}\)

+ Nếu \(x-2009=3\)

\(\Rightarrow x=2012\)

\(25-y^2=3\)

\(\Rightarrow y^2=22\)

\(\Rightarrow y=\sqrt{22}\)

Nguyễn Phương Thảo
Xem chi tiết
ngonhuminh
2 tháng 1 2017 lúc 16:55

\(VT\ge0\Rightarrow\)\(-5\le y\le5\)

\(VT=8k^2\Rightarrow25-y^2=8k^2\Rightarrow k^2\le3\)
\(k^2=\left\{0,1\right\}\)

\(k=0\Rightarrow\hept{\begin{cases}x=2009\\y=+-5\end{cases}}\)

\(k^2=1\Rightarrow y^2=17\left(loai\right)\)

KL

\(\left(x,y\right)=\left(2009,-5\right);\left(2009,5\right)\)

Trần Phương Uyên
Xem chi tiết
Hoàng Thị Cẩm Vân
8 tháng 1 2016 lúc 21:37

mh cx có bài thầy giao y hệt. Khi nào thầy chữa mh gửi cho