Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Thị Hải Yến
Xem chi tiết
Ánh Dương
Xem chi tiết
Nguyễn Việt Lâm
7 tháng 4 2019 lúc 23:47

\(a^3+11a=a\left(a^2+11\right)\)

Nếu \(a=3k+1\Rightarrow a^2+11=9k^2+6k+12⋮3\)

Nếu \(a=3k+2\Rightarrow a^2+11=9k^2+12k+15⋮3\)

\(\Rightarrow\left(a^3+11a\right)⋮3\) \(\forall a\in Z\) (1)

Mặt khác ta có:

\(2017\equiv1\left(mod3\right)\Rightarrow2017^{2017}\equiv1\left(mod3\right)\)

\(\Rightarrow\left(2017^{2017}+1\right)\equiv2\left(mod3\right)\)

\(\Rightarrow\left(2017^{2017}+1\right)⋮̸3\) (2)

Từ (1), (2) \(\Rightarrow\left(2017^{2017}+1\right)⋮̸\left(a^3+11a\right)\) \(\forall a\in Z\)

Đặng Anh Thư
Xem chi tiết
Nguyễn Việt Lâm
9 tháng 3 2021 lúc 9:57

Xét bộ gồm 2016 số: \(2^1;2^2;...;2^{2016}\)

Do 2017 nguyên tố đồng thời \(2^k\) là lũy thừa của 1 số nguyên tố khác 2017 nên \(2^k\) ko chia hết 2017 với mọi k 

Do đó tất cả các số trong bộ số nói trên đều ko chia hết 2017

- Nếu các số trong dãy trên chia 2017 có số dư đôi một khác nhau \(\Rightarrow\) có 2016 số dư \(\Rightarrow\) có đúng 1 số chia 2017 dư 1, giả sử đó là \(2^n\) thì \(2^n-1⋮2017\)

- Nếu tồn tại 2 số trong 2016 số trên có cùng số dư khi chia 2017 là \(2^i\) và \(2^j\) với \(1\le i< j\le2016\Rightarrow1\le j-i< 2016\)

\(\Rightarrow2^j-2^i⋮2017\)

\(\Rightarrow2^i\left(2^{j-i}-1\right)⋮2017\)

\(\Rightarrow2^{j-i}-1⋮2017\) (do \(2^i\) ko chia hết 2017)

\(\Rightarrow n=j-i\) thỏa mãn yêu cầu

Phùng Đức Đạt
Xem chi tiết
Ngọc Anh
Xem chi tiết
Doãn Thanh Phương
10 tháng 2 2018 lúc 20:29

Tham khảo bài này :

cách 1: 
xét 3^k. 
chọn k từ 1 đến 999 ta được dãy số 
3; 3² ; 3³;...; 3^999 
999 số trên khi chia cho 1000 sẽ được 999 số dư 
(0,1...999) 
xét 2 trh: 
trh 1: số dư của các số trong dãy đôi một khác nhau 
=> tồn tại một số trong dãy chia 1000 dư 1 
=> 3^a -1 chia hết 1000 
=> đpcm 

trh2: số dư của các số trong dãy không khác nhau đôi một 
=> sẽ có it nhất 2 số đồng dư 
2 số đó là: 3^m và 3ⁿ (1≤m<n≤999) 
=> hiệu của 2 số này chia hết cho 1000 
=> 3ⁿ - 3^m = h.1000 
mà: 3ⁿ - 3^m = 3^m.(3^(n-m) -1) 
lại có: 3^m không chia hết cho 1000 
=> 3^(n-m) - 1 chia hết cho 1000 
mà 1≤m<n≤999 => 0 ≤ n - m ≤ 999 
=> đpcm 
vậy tồn tại số k thuộc N sao cho 3^k-1 chia hết 1000 
.......... ....... 
cách 2: 
xét k= 2n (n chẵn) 
A= 3^(2n) -1 
A= (10-1)^n -1 
khai triển nhị thức ta đc: 
A= 10ⁿ - 1Cn.10^(n-1) + 2Cn.10^(n-2) +...+ (n-2)Cn.10^2 - (n-1)Cn.10 +1 -1 
A= 1000.[10^(n-2) -.....(n-3)Cn] + 100.n.(n+1)\2 - 10n 
lấy n= 100m 
=>B= n.(n+1)\2.100 - 10n 
=>B= 1000.(50.101m -m) 
=> A chia hết 1000 khi k= 200m

hồ quý tuấn
Xem chi tiết
hồ quý tuấn
Xem chi tiết
hồ quý tuấn
Xem chi tiết
việt nguyễn văn
Xem chi tiết