CMR:ko tồn tại số nguyên a thỏa mãn ( 2017 mũ 2017+1) chia hết a3+11a
Chứng minh rằng không tồn tại số nguyên a thỏa mãn \(\left(2017^{2017}+1\right)⋮a^3+11a\)
\(a^3+11a=a\left(a^2+11\right)\)
Nếu \(a=3k+1\Rightarrow a^2+11=9k^2+6k+12⋮3\)
Nếu \(a=3k+2\Rightarrow a^2+11=9k^2+12k+15⋮3\)
\(\Rightarrow\left(a^3+11a\right)⋮3\) \(\forall a\in Z\) (1)
Mặt khác ta có:
\(2017\equiv1\left(mod3\right)\Rightarrow2017^{2017}\equiv1\left(mod3\right)\)
\(\Rightarrow\left(2017^{2017}+1\right)\equiv2\left(mod3\right)\)
\(\Rightarrow\left(2017^{2017}+1\right)⋮̸3\) (2)
Từ (1), (2) \(\Rightarrow\left(2017^{2017}+1\right)⋮̸\left(a^3+11a\right)\) \(\forall a\in Z\)
Chứng minh rằng luôn tồn tại số nguyên dương n không vượt quá 2016 sao cho 2n-1 chia hết cho 2017.
Xét bộ gồm 2016 số: \(2^1;2^2;...;2^{2016}\)
Do 2017 nguyên tố đồng thời \(2^k\) là lũy thừa của 1 số nguyên tố khác 2017 nên \(2^k\) ko chia hết 2017 với mọi k
Do đó tất cả các số trong bộ số nói trên đều ko chia hết 2017
- Nếu các số trong dãy trên chia 2017 có số dư đôi một khác nhau \(\Rightarrow\) có 2016 số dư \(\Rightarrow\) có đúng 1 số chia 2017 dư 1, giả sử đó là \(2^n\) thì \(2^n-1⋮2017\)
- Nếu tồn tại 2 số trong 2016 số trên có cùng số dư khi chia 2017 là \(2^i\) và \(2^j\) với \(1\le i< j\le2016\Rightarrow1\le j-i< 2016\)
\(\Rightarrow2^j-2^i⋮2017\)
\(\Rightarrow2^i\left(2^{j-i}-1\right)⋮2017\)
\(\Rightarrow2^{j-i}-1⋮2017\) (do \(2^i\) ko chia hết 2017)
\(\Rightarrow n=j-i\) thỏa mãn yêu cầu
Cmr Không tồn tại số nguyên x nào thỏa mãn 20172016+1 chia hết cho x3+5x . Mình cảm ơn mọi người rất nhìu ạ <3 <3 <3
Chứng minh rằng trong tập nguyên dương luôn tồn tại số k sao cho 2017^k-1 chia hết cho 10^5
Tham khảo bài này :
cách 1:
xét 3^k.
chọn k từ 1 đến 999 ta được dãy số
3; 3² ; 3³;...; 3^999
999 số trên khi chia cho 1000 sẽ được 999 số dư
(0,1...999)
xét 2 trh:
trh 1: số dư của các số trong dãy đôi một khác nhau
=> tồn tại một số trong dãy chia 1000 dư 1
=> 3^a -1 chia hết 1000
=> đpcm
trh2: số dư của các số trong dãy không khác nhau đôi một
=> sẽ có it nhất 2 số đồng dư
2 số đó là: 3^m và 3ⁿ (1≤m<n≤999)
=> hiệu của 2 số này chia hết cho 1000
=> 3ⁿ - 3^m = h.1000
mà: 3ⁿ - 3^m = 3^m.(3^(n-m) -1)
lại có: 3^m không chia hết cho 1000
=> 3^(n-m) - 1 chia hết cho 1000
mà 1≤m<n≤999 => 0 ≤ n - m ≤ 999
=> đpcm
vậy tồn tại số k thuộc N sao cho 3^k-1 chia hết 1000
.......... .......
cách 2:
xét k= 2n (n chẵn)
A= 3^(2n) -1
A= (10-1)^n -1
khai triển nhị thức ta đc:
A= 10ⁿ - 1Cn.10^(n-1) + 2Cn.10^(n-2) +...+ (n-2)Cn.10^2 - (n-1)Cn.10 +1 -1
A= 1000.[10^(n-2) -.....(n-3)Cn] + 100.n.(n+1)\2 - 10n
lấy n= 100m
=>B= n.(n+1)\2.100 - 10n
=>B= 1000.(50.101m -m)
=> A chia hết 1000 khi k= 200m
cho p/q là phân số tối giản thỏa mãn: p/q = 1/2! + 2/3! + 3/4! + ....+ 2016/2017! chứng minh rằng q chia hết cho 2017
cho p/q là phân số tối giản thỏa mãn: p/q = 1/2! + 2/3! + 3/4! + ....+ 2016/2017! chứng minh rằng q chia hết cho 2017
cho p/q là phân số tối giản thỏa mãn: p/q = 1/2! + 2/3! + 3/4! + ....+ 2016/2017!
Chứng minh rằng q chia hết cho 2017
CHỨNG MINH RẰNG TỒN TẠI 1 SỐ GỒM TOÀN CHỮ SỐ 6 CHIA HẾT CHO 2017