Cho tam giác ABC cân tại A lấy điểm M là trung điểm của BC
a) Chứng minh tam giác ABM=tam giác ACM
b) Biết AB=10cm ; BC= 12 cm. Tính AM
c) qua M kẻ MK vuông góc AB ( k thuộc AB ) , Kẻ MH vuông góc AB (H thuộc AC) . Chứng minh MH = MK
d) Chứng minh AM vuông góc với KH
( Mng ơi , giúp mình câu d bài này với ạ , cảm ơn mng nhìu ạ )
mình chỉ giúp ý d theo mong muốn của bạn thôi :)
Có : AH = AK ( cái này bạn chứng minh ở câu trên chưa mình không biết; nếu chưa thì bạn chứng minh đi nhé )
=> A thuộc đường trung trực của HK
và MH=MK
=> M thuộc đường trung trực của HK
=> AM là đường trung tực của HK
=> AM ⊥ HK
Cho tam giác ABC cân tại A. Kẻ AH vuông góc với BC tại H.
1) Chứng minh tam giác ABH = tam giác ACH và H là trung điểm của BC.
2) Nếu có AB = 10cm, BC = 12 cm, hãy tính độ dài đoạn thẳng AH.
3) Kẻ HE vuông góc với AB tại E, HF vuông góc với AC tại F. Lấy các điểm M và N sao cho E là trung điểm của HM, F là trung điểm của HN. Chứng minh AN = AH.
4) Tam giác ABC cần thêm điều kiện gì thì A là trung điểm của MN?
Giúp mik vs ạ mik đang cần gấp.
1: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
Do đó: ΔAHB=ΔAHC
=>HB=HC
=>H là trung điểm của BC
2: Ta có: H là trung điểm của BC
=>\(HB=HC=\dfrac{BC}{2}=\dfrac{12}{2}=6\left(cm\right)\)
ΔAHB vuông tại H
=>\(HA^2+HB^2=AB^2\)
=>\(HA^2=10^2-6^2=64\)
=>\(HA=\sqrt{64}=8\left(cm\right)\)
3: Xét ΔAHN có
AF là đường cao
AF là đường trung tuyến
Do đó: ΔAHN cân tại A
=>AH=AH
4: Xét ΔAHM có
AE là đường trung tuyến
AE là đường cao
Do đó: ΔAHM cân tại A
=>AM=AH
Ta có: ΔAHN cân tại A
mà AC là đường cao
nên AC là phân giác của góc HAN
=>\(\widehat{HAN}=2\cdot\widehat{HAC}\)
Ta có: ΔAHM cân tại A
mà AB là đường cao
nên AB là phân giác của góc HAM
=>\(\widehat{HAM}=2\cdot\widehat{HAB}\)
Ta có: AM=AH
AH=AN
Do đó: AM=AN
Ta có: \(\widehat{HAM}+\widehat{HAN}=\widehat{MAN}\)
=>\(\widehat{MAN}=2\cdot\left(\widehat{HAB}+\widehat{HAC}\right)\)
=>\(\widehat{MAN}=2\cdot\widehat{BAC}\)
Để A là trung điểm của MN thì AM=AN và góc MAN=180 độ
=>góc MAN=180 độ
=>\(2\cdot\widehat{BAC}=180^0\)
=>\(\widehat{BAC}=90^0\)
Cho tam giác ABC vuông tại A. Kẻ AH vuông góc với BC, tia phân giác góc HAC cắt BC tại D.
a, Chứng minh tam giác ABD cân.
b, Từ H kẻ đường thẳng vuông góc với AD cắt AC tại E. Chứng minh: DE vuông góc với AC.
c, Cho AB=15 cm, AH=12 cm. Tính AD. Từ đó so sánh AD và HE.
Cho tam giác ABC vuông tại A. Kẻ AH vuông góc với BC, tia phân giác góc HAC cắt BC tại D.
a, Chứng minh tam giác ABD cân.
b, Từ H kẻ đường thẳng vuông góc với AD cắt AC tại E. Chứng minh: DE vuông góc với AC.
c, Cho AB=15 cm, AH=12 cm. Tính AD. Từ đó so sánh AD và HE.
Nhờ vẽ hình cho mình luôn nha
cho tam giác ABC vuông tại A ,ABC=60 độ;BD là Phân giác của ABC. ( D thuộc AC). Kẻ DE vuông góc BC ( E thuộc BC)
a. biết BC = 10cm AB=5 cm tính cạnh AC? b. so sánh: DE và DC
c chứng minh tg ABD = tg EBD
d chứng minh tg BDC cân
e kẻ CF vuông góc BD ( F thuộc tia BD) chứng minh BA;ED và CF đồng quy
GIÚP MIK VỚI Ạ MIK CẦN RẤT GẤP
a: \(AC=\sqrt{10^2-5^2}=5\sqrt{3}\left(cm\right)\)
b: ΔDEC vuông tại E
=>DE<DC
c: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
d: Xét ΔDBC có góc DBC=góc DCB
nên ΔDBC cân tại D
e: gọi giao của CF và AB là H
Xét ΔBHC có
BF,CA là đường cao
BF cắt CA tại D
=>D là trực tâm
=>HD vuông góc BC tại E
=>H,D,E thẳng hàng
=>BA,DE,CF là trực tâm
Cho tam giác ABC vuông tại A. Biết AC = 6cm, BC = 10cm, tia phân giác của góc ABC cắt AC tại D. Từ D kẻ DH vuông góc với BC tại H và DH cắt AB tại K.
a) Tính độ dài đoạn AB
b) Chứng minh: AD = DH
c) So sánh độ dài hai cạnh AD và DC
d) Chứng minh tam giác KBC là tam giác cân
a, Xét \(\Delta ABC\)VUÔNG tại A
Áp dụng định lý pitago ta có:
\(BC^2=AB^2+AC^2\)
\(\Rightarrow AB^2=BC^2-AC^2\)
\(\Rightarrow AB^2=10^2-6^2\)
\(\Rightarrow AB^2=100-36\)
\(\Rightarrow AB^2=64\)
\(\Rightarrow AB=\sqrt{64}=8\)
VẬY AB=8 cm
b, Xét \(\Delta ABD\)và \(\Delta HBD\)CÓ:
\(\widehat{BAD}=\widehat{BHD}=90độ\)
\(\widehat{ABD}=\widehat{HBD}\)(do BD là tia phân giác của \(\widehat{B}\))
BD là cạnh chung
\(\Rightarrow\Delta ABD=\Delta HBD\)(ch-gn)
\(\Rightarrow AD=HD\)(2 CẠNH TƯƠNG ỨNG)
c,Do \(\Delta ABD=\Delta HBD\left(câub\right)\)
\(\Rightarrow\widehat{BDA}=\widehat{BDH}\)(2 góc tương ứng)
lại có \(\widehat{ADK}=\widehat{HDC}\)(đối đỉnh)
\(\Rightarrow\widehat{BDA}+\widehat{ADK}=\widehat{BDH}+\widehat{HDC}\)
\(\Rightarrow\widehat{BDK}=\widehat{BDC}\)
Xét \(\Delta KBD\) VÀ \(\Delta CBD\)CÓ:
\(\widehat{ABD}=\widehat{CBD}\)(Do BD là tia phân giác của \(\widehat{B}\))
BD là cạnh chung
\(\widehat{BDK}=\widehat{BDC}\left(cmt\right)\)
Do đó \(\Delta KBD=\Delta CBD\left(g-c-g\right)\)
\(\Rightarrow BK=BC\)(2 CẠNH TƯƠNG ỨNG)
\(\Rightarrow\Delta KBC\) cân tại B
Cho tam giác ABC cân tại A ,(góc A bé hơn 90 độ )kẻ BF vuông góc AC . Kẻ ME vuông góc AB , gọi M là giao điểm của BF và CE
Biết AB = 10cm,BC = 12 cm b là giao điểm của AB và BC Tính AD
Bài 3: Cho tam giác ABC vuông tại A ( AB < AC). BK là tia phân giác góc ABC ( K thuộc AC). Kẻ KI vuông góc với BC tại I.
a) Tính BC biết AB = 34 cm; AC = 16 cm
b) Chứng minh rằng: ΔABK = ΔIBK
c) Kẻ AD vuông góc với BC. Chứng minh rằng AI là tia phân giác góc DAK
d) Gọi H là giao điểm của BK và AD. Chứng minh rằng: HB + HC < AB + AC
HELP ME MAI THI RỒI!!!
Cho tam giác ABC cân tại A. gọi D là trung điểm của BC. từ D kẻ DE vuông góc AB (E thuộc AB), DF vuông góc AC (E thuộc AC). Chứng minh rằng :
a/ ΔABD = ΔACD
b/ AD vuông góc với BC.
c/ tam giác EBD = tam giác FCD
d/ Cho AC = 10cm, BC = 12cm. tính AD.
a)Xét \(\Delta ABD\) và \(\Delta ACD\) có :
\(BD=DC\)
\(\widehat{ABD}=\widehat{ACD}\left(\Delta ABCcân\right)\)
AB= AC
=> \(\Delta ABD\) = \(\Delta ACD\) (c-g-c)
b) Vì \(\Delta ABC\) cân tại A nên AD vừa là đường trung tuyến vừa là đường cao
=> \(AD\perp BC\)
*Nếu chx học cách trên thì bạn xem cách dưới đây"
Vì \(\Delta ABD\) = \(\Delta ACD\) nên \(\widehat{ADB}=\widehat{ADC}\)
mà \(\widehat{ADB}+\widehat{ADC}=180^o\)
=> \(\widehat{ADB}=\widehat{ADC}=\dfrac{180^o}{2}=90^o\)
=> \(AD\perp BC\)
c)Xét \(\Delta EBD\) vuông tại E và \(\Delta FCD\) vuông tại F có :
\(\widehat{EBD}=\widehat{FCD}\)
\(BD=CD\)
=> \(\Delta EBD=\Delta FCD\left(ch-gn\right)\)
d) Vì D là trung điểm của BC nên \(DC=\dfrac{BC}{2}=\dfrac{12}{2}=6cm\)
Xét \(\Delta ADC\) vuông tại D có :
\(AC^2=AD^2+DC^2\)
\(100=AD^2+36\)
\(AD^2=100-36\)
\(AD^2=64\)
AD=8 cm