Cho a>3.Chứng minh 19a +7/a > 178/3
Cho a thuộc Z, chứng minh a^3-19a chia hết cho 6
Ta có: \(a^3-19a=a^3-a-18a=a\left(a^2-1\right)-18a\)
\(=a\left(a-1\right)\left(a+1\right)-18a\)
Ta thấy a; a - 1; a + 1 là tích của 3 số tự nhiên liên tiếp; mà tích của ba số tự nhiên liên tiếp luôn chia hết cho 6 \(\Rightarrow a\left(a-1\right)\left(a+1\right)⋮6\).
Ngoài ra; 18a cũng chia hết cho 6 \(\Rightarrow a^3-19a⋮6\)
Chứng minh cac số sau hia hết cho 6
A=a^3-a
B=a^3-5a
C=a^3+4a
D=a^3+19a
Bạn ơi đề bài thiếu điều kiện a thuộc Z kìa
A = a.(a^2 - 1) = (a-1).a.(a+1)
Ta thấy a-1;a;a+1 là 3 số nguyên liên tiếp nên có ít nhất 1 số chia hết cho 2 và 1 số chia hết cho 3
=> (a-1).a.(a+1) chia hết cho 6 [ vì (2;3)=1 ]
Cho a,b,c dương và a + b + c = 1.Chứng minh rằng:
\(\dfrac{19b^3-a^3}{ba+5b^2}+\dfrac{19c^3-b^3}{cb+5c^2}+\dfrac{19a^3-c^3}{ac+5a^2}\le3\)
Đề bị lỗi hiển thị hay sao ấy, mình không nhìn thấy BĐT/ đẳng thức bạn muốn chứng minh.
Cho a,b,c > 0. Chứng minh: \(\dfrac{19b^3-a^3}{ab+5b^2}+\dfrac{19c^3-b^3}{bc+5c^2}+\dfrac{19a^3-c^3}{ac+5a^2}\le3\left(a+b+c\right)\)
Áp dụng bổ đề:
\(x^3+y^3\ge xy\left(x+y\right)\)
Ta có:
\(\dfrac{19b^3-a^3}{ab+5b^2}+\dfrac{19c^3-b^3}{bc+5c^2}+\dfrac{19a^3-c^3}{ac+5a^2}\)
\(\le\dfrac{20b^3-ab\left(a+b\right)}{ab+5b^2}+\dfrac{20c^3-bc\left(b+c\right)}{bc+5c^2}+\dfrac{20a^3-ca\left(c+a\right)}{ac+5a^2}\)
\(=\dfrac{b\left(4b-a\right)\left(5b+a\right)}{ab+5b^2}+\dfrac{c\left(4c-b\right)\left(5c+b\right)}{bc+5c^2}+\dfrac{a\left(4a-c\right)\left(5a+c\right)}{ac+5a^2}\)
\(=4b-a+4c-b+4a-c=3\left(a+b+c\right)\)
Pls tìm trước khi hỏi $$\dfrac{19b^3-a^3}{ab+5^2}+\dfrac{19c^3-b^3}{bc+5c^2}+\dfrac ...
Cho a,b,c>0.Cm:(19b^3-a^3)/(ab+5b^2)+ - Trường Toán Pitago – Hướng dẫn ...
C/m bất đẳng thức khó cho hsg
C/m bất đẳng thức khó cho hsg | Diễn đàn HOCMAI - Cộng đồng học tập ...
Cho a,b,c >0 và a+b+c=1.CMR (19b^3-a^3)/(ba+5b^2)+(19c^3-b^3)/(cb ...
Câu hỏi của Anh đẹp traiii - Toán lớp 9 - Học toán với OnlineMath
Học tại nhà - Toán - Chứng minh đẳng thức
Bất đẳng thức - K2PI – TOÁN THPT | Chia sẻ Tài liệu, đề thi, hỗ trợ ...
Bất đẳng thức
Đề thi HSG 12 THPT An Lão, Hải Phòng - Diễn Đàn MathScope
giúp tớ bài toán Cm 9 này với! hu hu!? | Yahoo Hỏi & Đáp
VMF,HMF,k2pi, mathscope,... đủ cả
Cho a, b, c > 0. Chứng minh rằng: \(\dfrac{19b^3-a^3}{ab+5b^2}+\dfrac{19c^3-b^3}{cb+5c^2}+\dfrac{19a^3-c^3}{ac+5a^2}\le3\left(a+b+c\right)\)
Chuẩn hóa: a+b+c=3k
\(\Rightarrow\)\(\dfrac{a}{k}+\dfrac{b}{k}+\dfrac{c}{k}=3\)
Đặt (\(\dfrac{a}{k};\dfrac{b}{k};\dfrac{c}{k}\))\(\Rightarrow\left(x;y;z\right)\);x+y+z=3
ĐPCM\(\Leftrightarrow\)\(\sum\dfrac{19y^3-x^3}{xy+5y^2}\le3\left(x+y+z\right)\)
Ta CM BĐT:
\(\dfrac{19y^3-x^3}{xy+5y^2}\le4y-x\Leftrightarrow-\dfrac{\left(y-x\right)^2\left(x+y\right)}{xy+5y^2}\le0\)(đúng)
CMTT\(\Rightarrow\)ĐPCM
Cho a, b, c > 0 và \(a+b+c=1\). Chứng minh: \(\dfrac{19b^3-a^3}{ba+5b^2}+\dfrac{19c^3-b^3}{cb+5c^2}+\dfrac{19a^3-c^3}{ac+5a^2}\le3\)
\(+\frac{20b^3-\left(a^3+b^3\right)}{ab+5b^2}\le\frac{20b^3-ab\left(a+b\right)}{ab+5b^2}=\frac{b\left(20b^2-a^2-ab\right)}{b\left(a+5b\right)}=\frac{\left(4b-a\right)\left(a+5b\right)}{a+5b}=4b-a\)
( áp dụng bđt : \(a^3+b^3\ge ab\left(a+b\right)\) ( biến đổi tương đương là c/m đc ) )
Dấu "=" \(\Leftrightarrow a=b\)
+ Tương tự : \(\frac{19c^3-b^3}{bc+5c^2}\le4c-b\) Dấu "=" <=> b = c
\(\frac{19a^3-c^3}{ac+5a^2}\le4a-c\) Dấu "=" \(\Leftrightarrow a=c\)
Cộng vế theo vế ta có đpcm. Dấu "=" \(\Leftrightarrow a=b=c=\frac{1}{3}\)
1.Cho 3 số dương a,b,c. Chứng minh rằng:
\(\dfrac{19b^3-a^3}{ab+5b^2}+\dfrac{19c^3-b^3}{bc+5c^2}+\dfrac{19a^3-c^3}{ac+5a^2}\)≤ 3(a+b+c)
2.cho a,b,c dương thỏa man: a2+b2+c2=1
Tìm giá trị nhỏ nhất của biểu thức: P=\(\dfrac{bc}{a}+\dfrac{ac}{b}+\dfrac{ab}{c}\)
Cho a+5b chia hết cho 23 (a,b thuộc N). Chứng minh 19a+3b chia hết cho 23
\(4\left(a+5b\right)+\left(19a+3b\right)=23a+23b⋮23\)
Mà \(a+5b⋮23\Rightarrow19a+3b⋮23\)
Cho 19a+5b chia hết cho 11 (a,b thuộc N).Chứng minh 10a+9b chia hết cho 11
\(19a+5b+8.\left(10a+9b\right)=19a+5b+80a+72b=99a+77b⋮11\)
Mà \(19a+5b⋮11\Rightarrow8\left(10a+9b\right)⋮11\Rightarrow10a+9b⋮11\) (vì 8 và 11 là 2 số nguyên tố cùng nhau)