Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Quỳnh Nguyễn
Xem chi tiết
Akai Haruma
29 tháng 11 2023 lúc 22:00

Lời giải:

$A=2x^2+y^2+2xy+2x-2y+2023$

$=(x^2+2xy+y^2)+x^2+2x-2y+2023$

$=(x+y)^2-2(x+y)+x^2+4x+2023$

$=(x+y)^2-2(x+y)+1+(x^2+4x+4)+2018$

$=(x+y-1)^2+(x+2)^2+2018\geq 0+0+2018=2018$

Vậy GTNN của $A$ là $2018$. Giá trị này đạt tại $x+y-1=x+2=0$

$\Leftrightarrow x=-2; y=3$

Mary Smith
Xem chi tiết
Đời Buồn Tênh
5 tháng 8 2017 lúc 16:01

a)  ... = (x^2 -2xy + y^2)+(x^2 -2x+1)+2014=(x-y)^2 + (x-1)^2 +2014 >= 2014 

Đăngt thức xay ra khi x=y=1

๖Fly༉Donutღღ
Xem chi tiết
Lê Minh Vũ
8 tháng 7 2017 lúc 14:54

GTNN là 2015 nha  bạn

Nguyễn Huệ Lam
8 tháng 7 2017 lúc 14:59

\(B=2x^2+y^2+2xy+6x+2y+2015\)

\(=x^2+y^2+1+2xy+2y+2x+x^2+4x+4+2011\)

\(=\left(x^2+y^2+1+2xy+2y+2x\right)+\left(x^2+4x+4\right)+2011\)

\(=\left(x+y+1\right)^2+\left(x+2\right)^2+2011\)

Vì \(\left(x+y+1\right)^2+\left(x+2\right)^2\ge0\)nên \(\left(x+y+1\right)^2+\left(x+2\right)^2+2011\ge2011\)

Vậy \(MinB=2011\Leftrightarrow\hept{\begin{cases}\left(x+y+1\right)^2=0\\\left(x+2\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y+1=0\\x+2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-2\\y=1\end{cases}}\)

Nguyễn Huệ Lam
8 tháng 7 2017 lúc 16:19

Min là giá trị nhỏ nhất mà, không biết àk

Nguyễn Thị Lan Anh
Xem chi tiết
Nguyễn Mai Phương
Xem chi tiết
Trần Đức Thắng
17 tháng 8 2015 lúc 13:17

= x^2 - 2xy + y^2 + 2x - 2y + x^2 -  2x + 12 

= ( x-  y)^2  + 2 ( x - y)  + x^2 - 2x + 1 + 11 

= ( x-  y)^2 + 2 ( x-  y ) + 1 + (x - 1 )^2 + 10 

= ( x - y + 1 )^2 + ( x- 1 )^2 + 10 

Vậy GTNN là 10 khi x - 1 = 0 và x - y + 1 =  0 

=> x = 1 và 2 - y  = 0 

=>x = 1 và y = 2 

 

Nguyễn Võ Văn
Xem chi tiết
Le Thi Khanh Huyen
3 tháng 2 2017 lúc 18:20

\(2x^2+y^2+2xy-6x-2y+10\)

\(=\left(x^2-4x+4\right)+\left(x^2+y^2+1+2xy-2y-2x\right)+5\)

\(=\left(x-2\right)^2+\left(x+y-1\right)^2+5\ge5\)

Le Trang Nhung
Xem chi tiết
shoppe pi pi pi pi
Xem chi tiết
tth_new
11 tháng 5 2019 lúc 20:35

a) \(A=x^2+2y^2+2xy+4x+6y+19\)

\(=\left[\left(x^2+2xy+y^2\right)+2.\left(x+y\right).2+4\right]+\left(y^2+2y+1\right)+14\)

\(=\left[\left(x+y\right)^2+2\left(x+y\right).2+2^2\right]+\left(y+1\right)^2+14\)

\(=\left(x+y+2\right)^2+\left(y+1\right)^2+14\ge14\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x+y+2=0\\y=-1\end{cases}}\Leftrightarrow x=y=-1\)

b)Đề có gì đó sai sai...

c) Tương tự câu b,em cũng thấy sai sai...HÓng cao nhân giải ạ!

Trần Thanh Phương
12 tháng 5 2019 lúc 8:00

b) \(P=2x^2+y^2+2xy-2y-4\)

\(\Leftrightarrow2P=4x^2+2y^2+4xy-4y-8\)

\(\Leftrightarrow2P=\left(4x^2+4xy+y^2\right)+\left(y^2-4y+4\right)-12\)

\(\Leftrightarrow2P=\left(2x+y\right)^2+\left(y-2\right)^2-12\ge-12\forall x;y\)

Có \(2P\ge-12\Leftrightarrow P\ge-6\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x+y=0\\y-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\y=2\end{cases}}}\)

Công Mạnh Trần
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 8 2022 lúc 23:01

Bài 2: 

a: \(=-\left(x^2+2x-100\right)\)

\(=-\left(x^2+2x+1-101\right)\)

\(=-\left(x+1\right)^2+101< =101\)

Dấu = xảy ra khi x=-1

b: \(=-3\left(x^2-\dfrac{1}{3}x\right)\)

\(=-3\left(x^2-2\cdot x\cdot\dfrac{1}{6}+\dfrac{1}{36}-\dfrac{1}{36}\right)\)

\(=-3\left(x-\dfrac{1}{6}\right)^2+\dfrac{1}{12}< =\dfrac{1}{12}\)

Dấu = xảy ra khi x=1/6

c: \(=-\left(3x^2+4y^2-18x+8y-12\right)\)

\(=-\left(3x^2-18x+27+4y^2+8y+4-43\right)\)

\(=-3\left(x-3\right)^2-4\left(y+1\right)^2+43< =43\)

Dấu = xảy ra khi x=3 và y=-1