x-2/2016 + x-3/2017 + x-4/2018 +3=0
\(\frac{x-2}{2016}+\frac{x-3}{2017}+\frac{x-4}{2018}+3=0\)
\(\Leftrightarrow\left(\frac{x-2}{2016}+1\right)+\left(\frac{x-3}{2017}+1\right)+\left(\frac{x-4}{2018}+1\right)=0\)
\(\Leftrightarrow\frac{x+2014}{2016}+\frac{x+2014}{2017}+\frac{x+2014}{2018}=0\)
\(\Leftrightarrow\left(x+2014\right)\left(\frac{1}{2016}+\frac{1}{2017}+\frac{1}{2018}\right)=0\)
Mà \(\frac{1}{2016}+\frac{1}{2017}+\frac{1}{2018}\ne0\)
\(\Leftrightarrow x+2014=0\)
\(\Leftrightarrow x=-2014\)
Vậy \(x=-2014\)
Giải phương trình:
x+1/2018 + x+2/2017 + x+3/2016 + x+4/2015 + x+2043/6 =0
Cho x,y>0 thỏa mãn
x^2015+y^2015=x^2016+y^2016=x^2017+y^2017
C/m: 1/x^2018+1/y^2018=1/x^2019+1/y^2019
tìm x . 0.05*((2x-2)/2016 +2x/2017+(2x+2)/2018)=3.3-((x-1)/2016+x/2017+(x+1)/2018)
Tìm x biết
a)x/2+x/3+x/4+x/5=0
b)x+1/2019 + x+2/2018 = x+3/2017 + x+4/2016
a) \(\frac{x}{2}+\frac{x}{3}+\frac{x}{4}+\frac{x}{5}=0\)
\(\frac{77x}{60}=0\)
\(77x=0.60\)
\(77x=0\)
\(x=0\)
\(\frac{a+1}{2019}+\frac{a+2}{2018}=\frac{a+3}{2017}+\frac{a+4}{2016}\Leftrightarrow\frac{a+2020}{2019}+\frac{a+2020}{2018}=\frac{a+2020}{2017}+\frac{a+2020}{2016}\)
\(\left(a+2020\right)\left(\frac{1}{2019}+\frac{1}{2018}-\frac{1}{2017}-\frac{1}{2016}\right)=0\Rightarrow a+2020=0\Leftrightarrow a=-2020\)
Giai phương trình:
\(\frac{x-1}{2018}+\frac{x-2}{2017}+\frac{x-3}{2016}+\frac{x-2043}{8}=0\)0
\(\frac{x-1}{2018}+\frac{x-2}{2017}+\frac{x-3}{2016}+\frac{x-2043}{8}\)\(=0\)
\(\Leftrightarrow\)\(\frac{x-1}{2018}-1+\frac{x-2}{2017}-1+\frac{x-3}{2016}-1\)\(+\frac{x-2043}{8}+3=0\)
\(\Leftrightarrow\)\(\frac{x-1}{2018}-\frac{2018}{2018}+\frac{x-2}{2017}-\frac{2017}{2017}\)\(+\frac{x-3}{2016}-\frac{2016}{2016}+\frac{x-2043}{8}+\frac{24}{8}=0\)
\(\Leftrightarrow\)\(\frac{x-2019}{2018}+\frac{x-2019}{2017}+\frac{x-2019}{2016}\)\(+\frac{x-2019}{8}=0\)
\(\Leftrightarrow\)\(\left(x-2019\right).\left(\frac{1}{2018}+\frac{1}{2017}+\frac{1}{2016}+\frac{1}{8}\right)=0\)
\(\Leftrightarrow\)\(x-2019=0\) ( Vì \(\frac{1}{2018}+\frac{1}{2017}+\frac{1}{2016}+\frac{1}{8}\ne0\))
\(\Leftrightarrow\) \(x=2019\)
Vậy phương trình có nghiệm là : \(x=2019\)
\(\frac{x-2}{2016}+\frac{x-3}{2017}+\frac{x-4}{2018}+3=0\)
\(\frac{x-2}{2016}+\frac{x-3}{2017}+\frac{x-4}{2018}+3=0\\ \Leftrightarrow\left(\frac{x-2}{2016}+1\right)+\left(\frac{x-3}{2017}+1\right)+\left(\frac{x-4}{2018}+1\right)=0\\ \Leftrightarrow\frac{x+2014}{2016}+\frac{x+2014}{2017}+\frac{x+2014}{2018}=0\\ \Leftrightarrow\left(x+2014\right)\left(\frac{1}{2016}+\frac{1}{2017}+\frac{1}{2018}\right)=0\\ Vì\frac{1}{2016}+\frac{1}{2017}+\frac{1}{2018}\ne0\\ \Rightarrow x+2014=0\\ \Leftrightarrow x=-2014\\ Vậy...\)
\(\frac{x-2}{2016}+1+\frac{x-3}{2017}+1+\frac{x-4}{2018}+1+3-3=0\)
\(\frac{x-2014}{2016}+\frac{x-2014}{2017}+\frac{x-2014}{2018}=0\)
\(\left(x-2014\right)\left(\frac{1}{2016}+\frac{1}{2017}+\frac{1}{2018}\right)=0\)
⇒x-2014=0➞x=2014
x-2/2016 + x-3/2017 + x-4/2018 +3=0
em giải nhanh giúp em vớiiiiiii
Ta có\(\frac{x-2}{2016}+\frac{x-3}{2017}+\frac{x-4}{2018}+3=0\)
\(\Leftrightarrow\frac{x-2}{2016}+1+\frac{x-3}{2017}+1+\frac{x-4}{2018}=0\)
\(\Leftrightarrow\frac{x+2014}{2016}+\frac{x+2014}{2017}+\frac{x+2014}{2018}=0\)
\(\Leftrightarrow\left(x+2014\right)\left(\frac{1}{2016}+\frac{1}{2017}+\frac{1}{2018}\right)=0\) Vì \(\left(\frac{1}{2016}+\frac{1}{2017}+\frac{1}{2018}\right)>0\)
\(\Rightarrow x+2014=0\)
\(\Rightarrow x=-2014\)
a)A=/x+7/+/x^2-169/-/x-2018/
b)B=[2018/2+2018/3+2028/4+.....+2019/2018]:[1/2018+2/2017+3/2016+......+2018]