a: Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
nên ABDC là hình bình hành
mà \(\widehat{BAC}=90^0\)
nên ABDC là hình chữ nhật
b: AB=CD
CD=CE
Do đó: AB=CE
Xét tứ giác ABCE có
AB//CE
AB=CE
Do đó:ABCE là hình bình hành
=>\(\widehat{ABM}=\widehat{AEC}\)
c: ΔGAD vuông tại G
mà GM là đường trung tuyến
nên \(GM=\dfrac{1}{2}AD\)
=>\(GM=\dfrac{1}{2}BC\)
Xét ΔCGB có
GM là đường trung tuyến(M là trung điểm của BC)
\(GM=\dfrac{BC}{2}\)
Do đó: ΔCGB vuông tại G
=>BG vuông góc GC
B1 :Cho tam giác ABC có 2 đường cao BD,CE. Gọi M,N là trung điểm của BC,DE. C/m MN vuông góc DE.
B2: Cho tam giác ABC cân tại A. H là trung điểm của BC. Kẻ HE vuông góc AC. Gọi I là trung điểm của HE. C/m AI vuông góc BE
B3: Cho tam giác ABC vuông tại A. M là trung điểm của BC. Đường cao AH. Kẻ HE vuông góc AC cắt AM tại N. C/m AM vuông góc BN
a: Xét ΔNAB có
NM vừa là đường cao, vừa là trung tuyến
nên ΔBAN cân tại N
b: Xét ΔBAC có
M là trung điểm của BA
MN//AC
Do đó: N là trung điểm của BC
Cho tam giác ABC có góc A nhọn, phía ngoài tam giác vẽ các tam giác vuông cân tại A là ABD, ACE. Gọi M là trung điểm của BC. Cm AM = 1/2 DE và AM vuông góc DECho tam giác ABC có góc A nhọn, phía ngoài tam giác vẽ các tam giác vuông cân tại A là ABD, ACE. Gọi M là trung điểm của BC. Cm AM = 1/2 DE và AM vuông góc DECho tam giác ABC có góc A nhọn, phía ngoài tam giác vẽ các tam giác vuông cân tại A là ABD, ACE. Gọi M là trung điểm của BC. Cm AM = 1/2 DE và AM vuông góc DE
Cho tam giác ABC vuông tại A, M là trung điểm của BC. Trên tia đối của tia MA lấy một điểm N sao cho M là trung điểm của AN. Cmr
a/ BA=NC ; b/ Tam giác ABC= Tam giác CAN
c/ Nếu tam giác ABC không phải tam giác vuông thì kết quả nào trong 2 kết quả trên sai. Vì sao
Mong mn giúp em cần gấp ạ
cho tam giác ABC , M là trung điểm của BC , biết AM=BC. chứng minh tam giác ABC vuông tại A
cho tam giác abc m là trung điểm của bc biết am = 1/2 bc .cmr tam giác abc vuông tại a
cho tam giác abc nhọn vẽ về phía ngoài tam giác abc, 2 tam giác bad vuông tại a, ab = ad và tam giác cae vuông tại a và ae = ac:
a) CM BE = CD
b) CM BE _|_ CD
c) gọi M là trung điểm của BC. CM AM _|_ DE
d) gọi N là trung điểm của DE. CM AN _|_ BC
a: \(\widehat{BAE}=\widehat{BAC}+\widehat{CAE}=90^0+\widehat{BAC}\)
\(\widehat{CAD}=\widehat{DAB}+\widehat{BAC}=90^0+\widehat{BAC}\)
=>\(\widehat{BAE}=\widehat{CAD}\)
Xét ΔBAE và ΔDAC có
BA=DA
\(\widehat{BAE}=\widehat{DAC}\)
AE=AC
Do đó: ΔBAE=ΔDAC
=>BE=CD
b: Gọi giao điểm của BE với CD là H, giao điểm của BE với AC là G
ΔDAC=ΔBAE
=>\(\widehat{AEB}=\widehat{ACD}\)
Xét ΔEAG có \(\widehat{AEG}+\widehat{EGA}+\widehat{EAG}=180^0\)
Xét ΔGHC có \(\widehat{GHC}+\widehat{GCH}+\widehat{HGC}=180^0\)
=>\(\widehat{AEG}+\widehat{EGA}+\widehat{EAG}=\widehat{GHC}+\widehat{GCH}+\widehat{HGC}\)
=>\(\widehat{EAG}=\widehat{GHC}=90^0\)
=>BE vuông góc CD
Cho tam giác ABC có BC=a. Dựng ra ngoài ABC các tam giác ABE vuông cân tại B và tam giác ACF vuông cân tại C.Gọi M là trung điểm EF. Kẻ MH vuông góc với BC tại H. Tính MH theo a |