Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Hồng Sâm
Xem chi tiết
Đoàn Đức Hà
24 tháng 2 2021 lúc 21:41

\(\frac{3}{n-2018}+\frac{2}{n-2019}+\frac{1}{n-2020}=3\)

\(\Leftrightarrow\frac{3}{n-2018}-1+\frac{2}{n-2019}-1+\frac{1}{n-2020}-1=0\)

\(\Leftrightarrow\frac{3-\left(n-2018\right)}{n-2018}+\frac{2-\left(n-2019\right)}{n-2019}+\frac{1-\left(n-2020\right)}{n-2020}=0\)

\(\Leftrightarrow\frac{2021-n}{n-2018}+\frac{2021-n}{n-2019}+\frac{2021-n}{n-2020}=0\)

\(\Leftrightarrow\left(2021-n\right)\left(\frac{1}{n-2018}+\frac{1}{n-2019}+\frac{1}{n-2020}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2021-n=0\left(1\right)\\\frac{1}{n-2018}+\frac{1}{n-2019}+\frac{1}{n-2020}=0\left(2\right)\end{cases}}\)

Giải \(\left(1\right)\Leftrightarrow n=2021\).

Giải \(\left(2\right)\)

- Với \(n< 2018\)thì: \(\frac{1}{n-2018}< 0,\frac{1}{n-2019}< 0,\frac{1}{n-2020}< 0\)nên phương trình vô nghiệm. 

- Với \(n=2018,n=2019,n=2020\)không thỏa điều kiện xác định. 

- Với \(n>2020\)thì \(\frac{1}{n-2018}>0,\frac{1}{n-2019}>0,\frac{1}{n-2020}>0\) nên phương trình vô nghiệm. 

Khách vãng lai đã xóa
Đào Anh Phương
Xem chi tiết
Nguyễn Việt Doanh
Xem chi tiết
Nguyễn Việt Doanh
Xem chi tiết
zZz Cool Kid_new zZz
9 tháng 4 2020 lúc 1:23

a

Ta có:\(2020\equiv1\left(mod3\right)\Rightarrow2020^{2019}\equiv1\left(mod3\right)\Rightarrow2020^{2019}-1\equiv0\left(mod3\right)\)

Khi đó:\(\left(2020^{2019}+1\right)\cdot\left(2020^{2019}-1\right)\equiv0\left(mod3\right)\)

suy ra đpcm

b

\(n^5+96n=n\left(n^4+96\right)\)

Để \(n^5+96n\) là số nguyên tố thì:\(n^4+96=1\left(h\right)n=1\)

Do \(n^4+96>1\Rightarrow n=1\)

Thay vào ta thấy thỏa mãn

Vậy n=1

Khách vãng lai đã xóa
nguyễn trí tâm
10 tháng 4 2020 lúc 0:50

a, =2020^4038 -1

Vì  \(2020 \equiv 1 \pmod{3}\)

->\(2020^(4038) \equiv 1 \pmod{3}\)

->2020^4038 -1 chia hết cho 3 -> dpcm

Khách vãng lai đã xóa
to thanh
12 tháng 4 2020 lúc 16:26

(2020^2019+1)(2020^2019-1)=(2020^2019+1).(2020-1).(2020^2018 + 2020^2017+ 2020^2016+....+1) 

mà 2019 chia hết cho 3 nên (2020^2019+1).(2020-1).(2020^2018 + 2020^2017+ 2020^2016+....+1) chia hết cho 3

b) n^5 + 96n=n(n^4 + 96) luôn chia hết cho n và (n^4 + 96)

n(n^4 + 96) là số nguyên tố <=> n=1

Khách vãng lai đã xóa
Bảo hay Bẻo ????=))
Xem chi tiết
48. Hồ Tiến Vương 6/12
Xem chi tiết
Huỳnh KIm Anh
28 tháng 12 2021 lúc 16:10

15.B

16.C

17.A

18.D

19.A

còn câu 20,21 mình sợ mình làm sai nên k ghi đáp án sorry bạn nha:(

Thái Minh Trí
Xem chi tiết
Nguyên
7 tháng 11 lúc 21:28

yamte aaaa

Nguyễn Nam
Xem chi tiết
Vu Ngoc Mai
9 tháng 2 2017 lúc 14:58

Bấm vào đúng là đáp án sẽ hiện lên!!!!

Thử đi

Hoàng Quỳnh Chi
Xem chi tiết
HT.Phong (9A5)
6 tháng 10 2023 lúc 5:29

Bài 5.5:

\(\left(2x-3\right)\left(x+1\right)+\left(4x^3-6x^2-6x\right):\left(-2x\right)=18\)

\(\Leftrightarrow\left(2x^2+2x-3x-3\right)+2x\cdot\left(2x^2-3x-3\right):\left(-2x\right)=18\)

\(\Leftrightarrow2x^2-x-3-2x^2+3x+3=18\)

\(\Leftrightarrow2x=18\)

\(\Leftrightarrow x=\dfrac{18}{2}\)

\(\Leftrightarrow x=9\)