tìm số tự nhiên n để
(n+1)+(n+2)+(n+3)+....+(n+2020)=2025*1010
Tìm số tự nhiên n sao cho:
3/n-2018 + 2/n-2019 + 1/n-2020 =3
\(\frac{3}{n-2018}+\frac{2}{n-2019}+\frac{1}{n-2020}=3\)
\(\Leftrightarrow\frac{3}{n-2018}-1+\frac{2}{n-2019}-1+\frac{1}{n-2020}-1=0\)
\(\Leftrightarrow\frac{3-\left(n-2018\right)}{n-2018}+\frac{2-\left(n-2019\right)}{n-2019}+\frac{1-\left(n-2020\right)}{n-2020}=0\)
\(\Leftrightarrow\frac{2021-n}{n-2018}+\frac{2021-n}{n-2019}+\frac{2021-n}{n-2020}=0\)
\(\Leftrightarrow\left(2021-n\right)\left(\frac{1}{n-2018}+\frac{1}{n-2019}+\frac{1}{n-2020}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2021-n=0\left(1\right)\\\frac{1}{n-2018}+\frac{1}{n-2019}+\frac{1}{n-2020}=0\left(2\right)\end{cases}}\)
Giải \(\left(1\right)\Leftrightarrow n=2021\).
Giải \(\left(2\right)\):
- Với \(n< 2018\)thì: \(\frac{1}{n-2018}< 0,\frac{1}{n-2019}< 0,\frac{1}{n-2020}< 0\)nên phương trình vô nghiệm.
- Với \(n=2018,n=2019,n=2020\)không thỏa điều kiện xác định.
- Với \(n>2020\)thì \(\frac{1}{n-2018}>0,\frac{1}{n-2019}>0,\frac{1}{n-2020}>0\) nên phương trình vô nghiệm.
Tìm số tự nhiên n lớn nhất để tích các số tự nhiên từ 1 đến 2020 chia hết cho 2019^n
a,Chứng minh rằng (2020^2019+1)(2020^2019-1) chia hết cho 3
b,Tìm số tự nhiên n để n^5 + 96n là số nguyên tố
giúp hộ với
a,Chứng minh rằng (2020^2019+1)(2020^2019-1) chia hết cho 3
b,Tìm số tự nhiên n để n^5 + 96n là số nguyên tố
đang cần gấp
a
Ta có:\(2020\equiv1\left(mod3\right)\Rightarrow2020^{2019}\equiv1\left(mod3\right)\Rightarrow2020^{2019}-1\equiv0\left(mod3\right)\)
Khi đó:\(\left(2020^{2019}+1\right)\cdot\left(2020^{2019}-1\right)\equiv0\left(mod3\right)\)
suy ra đpcm
b
\(n^5+96n=n\left(n^4+96\right)\)
Để \(n^5+96n\) là số nguyên tố thì:\(n^4+96=1\left(h\right)n=1\)
Do \(n^4+96>1\Rightarrow n=1\)
Thay vào ta thấy thỏa mãn
Vậy n=1
a, =2020^4038 -1
Vì \(2020 \equiv 1 \pmod{3}\)
->\(2020^(4038) \equiv 1 \pmod{3}\)
->2020^4038 -1 chia hết cho 3 -> dpcm
(2020^2019+1)(2020^2019-1)=(2020^2019+1).(2020-1).(2020^2018 + 2020^2017+ 2020^2016+....+1)
mà 2019 chia hết cho 3 nên (2020^2019+1).(2020-1).(2020^2018 + 2020^2017+ 2020^2016+....+1) chia hết cho 3
b) n^5 + 96n=n(n^4 + 96) luôn chia hết cho n và (n^4 + 96)
n(n^4 + 96) là số nguyên tố <=> n=1
Cho số tự nhiên n khác 0. Tìm tất cả các giá trị của n biết:
2n : (1 + 1/1+2 + 1/1+2+3 + 1+2+3+4 + ... + 1/1+2+3+...+n)=2020
Câu 15. Tìm số tự nhiên m thỏa mãn 202018 < 20m < 202020?
A. m = 2020. B. m = 2019. C. m = 2018. D. m = 20.
Câu 16. Tìm số tự nhiên n thỏa mãn 3n = 81
A. n = 2 B. n = 3 C. n = 4 D. n = 8
Câu 17: Viết kết quả phép tính sau dưới dạng một luỹ thừa: 87: 8 là:
A. 86 B. 85 C. 84 D. 83
Câu 18: Cho biều thức M = 75 + 120 + x. Giá trị nào của x dưới đây thì M ⋮ 3
A.x = 7 B.x= 5 C.x =4 D.x =12
Câu 19: Tổng nào sau đây chia hết cho 7 ?
A.49 + 70 B.14 + 51 C.7 + 134 D.10+16
Câu 20: Số tự nhiên m chia cho 45 dư 20 có dạng là:
A. 45 + 20k B. 45k – 20 C. 45 – 20k D. 45k + 20
Câu 21: Điền chữ số vào dấu * để chia hết cho 3:
A. {0; 3; 6}. B.{1; 3; 6; 9}. C.{3; 6; 9}. D.{0; 6; 9}.
15.B
16.C
17.A
18.D
19.A
còn câu 20,21 mình sợ mình làm sai nên k ghi đáp án sorry bạn nha:(
câu 1: Tìm số tự nhiên n để n2 + 3 chia hết cho n+ 2
câu 2: Tìm số tự nhiên n để (3n+14) chia hết cho n+1
Tìm các số tự nhiên n để 2020+n2 là một số chính phương.
( Giải chi tiết giúp mình nhá )
Bấm vào đúng là đáp án sẽ hiện lên!!!!
Thử đi
Bài 5.5: Tìm x: (2x-3)(x+1)+(4x\(^3\)-6x\(^2\)-6x):(-2x)=18
Bài 6.1: Tìm số tự nhiên n để: 5x\(^{n-2}\):3x\(^2\)
Bài 6.2: Tìm số tự nhiên n để đa thức x\(^{n-1}\)-3x\(^2\):2x\(^2\)
Bài 6.3: Tìm n ∈ N để phép tính chia sau là phép chia hết:
3x\(^7\)y\(^7\)-4x\(^6\)y\(^6\)-5x\(^3\)y\(^3\):(2x\(^n\)y\(^n\))
Trả lời nhanh giúp mìn nhóe!
Bài 5.5:
\(\left(2x-3\right)\left(x+1\right)+\left(4x^3-6x^2-6x\right):\left(-2x\right)=18\)
\(\Leftrightarrow\left(2x^2+2x-3x-3\right)+2x\cdot\left(2x^2-3x-3\right):\left(-2x\right)=18\)
\(\Leftrightarrow2x^2-x-3-2x^2+3x+3=18\)
\(\Leftrightarrow2x=18\)
\(\Leftrightarrow x=\dfrac{18}{2}\)
\(\Leftrightarrow x=9\)