Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
7 tháng 12 2019 lúc 4:44

Bài tập tổng hợp chương 2 Hình học 8 | Lý thuyết và Bài tập Toán 8 có đáp án

Xét Δ ABC cân tại A có AB = AC = b, BC = a.

Từ A kẻ AH ⊥ BC.

Ta có BH = HC = 1/2BC = a/2

Khi đó ta có: S A B C   =   1 2 A H . B C   =   1 2 . a . A H

Áp dụng định lý Py – to – go ta có:

A C 2   =   A H 2   +   H C 2   ⇒   A H   =   A C 2   -   H C 2

Khi đó SABC = 1/2AH.BC

Bài tập tổng hợp chương 2 Hình học 8 | Lý thuyết và Bài tập Toán 8 có đáp án

Do đó diện tích của tam giác đều các cạnh bằng a làBài tập tổng hợp chương 2 Hình học 8 | Lý thuyết và Bài tập Toán 8 có đáp án

Khanh Nguyen
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
5 tháng 2 2018 lúc 5:36

Bài tập: Diện tích tam giác | Lý thuyết và Bài tập Toán 8 có đáp án

Xét Δ ABC cân tại A có AB = AC = b, BC = a.

Từ A kẻ AH ⊥ BC.

Ta có BH = HC = 1/2BC = a/2

Bài tập: Diện tích tam giác | Lý thuyết và Bài tập Toán 8 có đáp án

Khi đó SABC = 1/2AH.BCBài tập: Diện tích tam giác | Lý thuyết và Bài tập Toán 8 có đáp án

Do đó diện tích của tam giác đều các cạnh bằng a làBài tập: Diện tích tam giác | Lý thuyết và Bài tập Toán 8 có đáp án

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
21 tháng 12 2018 lúc 18:28

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
8 tháng 4 2017 lúc 8:43

nguyễn quang đạt
Xem chi tiết
Ánh Loan
Xem chi tiết
Nguyễn Trâm
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 1 2022 lúc 20:39

\(P=\dfrac{6+5+5}{2}=8\left(cm\right)\)

\(S=\sqrt{8\cdot\left(8-5\right)\cdot\left(8-5\right)\cdot\left(8-6\right)}=\sqrt{16\cdot9}=12\left(cm^2\right)\)

Hưởng T.
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 7 2021 lúc 21:32

Câu 1:

Diện tích tam giác đều cạnh 3cm là:

\(S=\dfrac{3^2\cdot\sqrt{3}}{4}=\dfrac{9\sqrt{3}}{4}\left(cm^2\right)\)

Câu 2: 

Nửa chu vi tam giác là:

\(P=\dfrac{C}{2}=\dfrac{8+8+6}{2}=\dfrac{22}{2}=11\left(cm\right)\)

Diện tích tam giác là:

\(S=\sqrt{P\cdot\left(P-A\right)\cdot\left(P-B\right)\cdot\left(P-C\right)}=\sqrt{11\cdot\left(11-8\right)^2\cdot\left(11-6\right)}\)

\(=\sqrt{11\cdot5\cdot9}=3\sqrt{55}\left(cm^2\right)\)