cho tam giác ABC. Trên tia đối của AB lấy D sao cho AD=AB, trên tia đối của AC lấy E sao cho AE=AC
cho tam giác ABC cân tại A trên tia đối của tia AC lấy điểm D trên tia đối của tia AB lấy điểm E sao cho AD=AE tứ giác DECB là hình j? vì sao?
Cho tam giác đều ABC , Trên tia đối của tia AB , lấy điểm D và trên tia đối của tia AC , lấy điểm E sao cho AD = AE . Gọi M,N lần lượt là trung điểm của AE , AB và CD . Chứng minh : tam giác MNP là tam giác đều .
Hình vẽ bn tự vẽ
Vì tam giác ABC đều nên góc BAC=60 độ
Mà góc EAD=góc BAC
Suy ra: góc EAD=60 độ
Ta lại có: AE=AD(gt)
Suy ra: tam AED đều có DM là đg trung tuyến
Suy ra DM cũng là đường cao
Xét tam giác vuông DMC có:
\(MP=\frac{1}{2}CD\)(1)
Tương tự: CN vuông góc AB
Xét tam giác vuông CND có:
\(NP=\frac{1}{2}CD\)(2)
Chứng minh tam giác AEB= tam giác ADC (c.g.c) bn tự chứng minh
Suy ra: CD=BE
Mà tam giác AEB có: MN là đường trung bình
Suy ra: \(MN=\frac{1}{2}BE\)
Suy ra: \(MN=\frac{1}{2}CD\)(Vì BE=CD) (3)
Từ (1);(2) và (3)
Vậy tam giác MNP đều
Chúc bn học tốt.
Mik đi hc đến 8h30 tối mới về nên làm hơi trễ
Cho tam giác đều ABC , Trên tia đối của tia AB , lấy điểm D và trên tia đối của tia AC , lấy điểm E sao cho AD = AE . Gọi M,N , P lần lượt là trung điểm của AE , AB và CD . Chứng minh : tam giác MNP là tam giác đều .
Giúp mình với , ai nhanh mình tick cho nhé !
Cho tam giác đều ABC , Trên tia đối của tia AB , lấy điểm D và trên tia đối của tia AC , lấy điểm E sao cho AD = AE . Gọi M,N lần lượt là trung điểm của AE , AB và CD . Chứng minh : tam giác MNP là tam giác đều .
GIúp mình với , ai nhanh mình tick nhé !
gọi M,N,P lần lượt là các trung điểm nha , mình ghi thiếu nha !
Cho Tam giác ABC có góc B = 2C tia phân giác của góc B cắt AC tại D trên tia đối của tia BD lấy E sao cho BE bằng AC. Trên tia đối của tia CB lấy K sao cho CK bằng AB .
a) Tứ giác BHKC là hình bình hành vì có hai đường chéo BK và CH cắt nhau tại điểm A là trung điểm của mỗi đường.
b) Tứ giác AHIK là hình bình hành nên AK // IH và AK = IH suy ra AB // IH và AB = IH.
Tứ giác ABIH là hình bình hành, do đó IA // HB.
AM là đường trung bình của tam giác BHC, suy ra MB = MC.
c) Tứ giác DEKH là hình thang vì có HK // DE.
Hình thang DEKH là hình thang cân
.............................
Tam giác ABC,trên tia đối của tia AB lấy D sao cho AD=AB.Trên tia đối của tia AC lấy E sao cho AE=AC.Một dg thẳng qua A cắt DE và BC lần lượt tại M và N C.minh: a. BC//DE b.AM=AN
Xét ΔAED và ΔACB có:
AE=AC(gt)
\(\widehat{EAD}=\widehat{CAB}\left(dd\right)\)
AD=AB(gt)
=>ΔAED=ΔACB(c.g.c)
=>\(\widehat{ADE}=\widehat{ABC}\). Mà hai góc này ở vị trí sole trong)
=>BC//DE
b)Xét ΔAMD và ΔANB có:
\(\widehat{ADM}=\widehat{ABN}\left(cmt\right)\)
AD=AB(gt)
\(\widehat{MAD}=\widehat{NAB}\left(dd\right)\)
=>ΔAMD=ΔANB(g.c.g)
=>AM=AN
Cho tam giác ABC có AB=AC. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia BA lấy điểm E sao cho ED=EB. Chứng minh rằng: ED//AC
Cho tam giác ABC cân tại A .Trên tia đối của tia AB lấy điểm D ,trên tia đối AC lấy điểm E sao cho AD = AE .Chứng minh
a, BE // BC
b, BE =CD
c, tam giác BED = tam gác CDE
bn tự vẽ hình nha
a) vì tam giác ABC cân tại A
=> Góc ABC=(180-BAC)/2 (1)
vì AE=AD=> tam giác ADE cân tại A
=> góc ADE=(180-EAD)/2 (2)
mà góc BAC= góc EAD (3)
từ (1),(2) và (3) => góc ABC= góc EDA
mà 2 góc ở vị trí so le trong
=> DE song song với BC
B) xét tam giác BAE và tam giác CAD có
AE=AD ( gt)
góc BAE =góc CAD
AB = AC
=> tam giác BAE = tam giác CAD
=> BE = CD ( 2 cạnh tương ứng)
c)bn tự làm nha... nếu ko bt cứ hỏi ... mk đánh mỏi tay qué
Cho tam giác ABC cân ( AB=AC; góc A tù ). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy E sao choBD=CE. Trên tia đối của CA lấy điểm I sao cho CI=CA.
a) Chứng minh: AB+AC < AD+AE
b) Từ D và E kẻ các đường thẳng cùng vuông góc với BC cắt AB; AI theo thứ tự tại M;N. Chứng minh BM=CN.
c) Chứng minh rằng chu vi tam giác ABC nhỏ hơn chu vi tam giác AMN.