chứng minh đẳng thức
a. (a-b)^2 = a^2 - 2ab +b^2
b. (a+b)^3= a^3 + 3a^2b+ 3ab^=+ b^3
c. (a-b)^3= a^3 - 3a^2b +3ab^2 -b^2
d. ( a-b)^3= a^3- 3a^2b+ 3ab^2 -b^3
e. (a-b) ( a^2 + ab +b^2) = a^3 -b^3
g. ( a-b) ( a+b) = a^2- b^2
h. ( a+b+c) ( a^2 + b^2 +c^2 - ab- bc -ac )= a^3+ b^3=c^3 -3abc
k.( a+b+c)^2 = a^2 +b^2 + c^2 + 2ab+ 2bc+2ac
m.( x^3+ x^2y+xy^2+ y^2) ( x-y) = x^4 -y^4
n. ( a+b) ( a^3 -ab +b^2) + ( a-b) ( a^2 +ab +b^2)= 2a^3
a. (a-b)^2 = (a-b)(a-b) = a^2 - ab - ba + b^2 = a^2 - 2ab + b^2
b. (a+b)^3= (a+b)(a+b)(a+b) = (a^2 + 2ab + b^2)(a + b) = a^3 + a^2b + 2a^2b + 2ab^2 + ab^2 + b^3 = a^3 + 3a^2b + 3b^2a + b^3
c. (a-b)^3= (a - b)(a-b)(a-b) = (a^2 - 2ab + b^2)(a - b) = a^3 - a^2b - 2a^2b + 2ab^2 + b^2a - b^3 = a^3 - 3a^2b + 3ab^2 - b^3
e. (a-b) ( a^2 + ab +b^2) = a^3 + a^2b + b^2a - ba^2 - ab^2 - b^3 = a^3 - b^3
g. ( a-b) ( a+b) = a^2 +ab -ab - b^2 = a^2 - b^2
Bài 1: CMR
a/ 2*(a^3+ b^3+ c^3- 3abc)=(a+b+c)*((a-b)^2+(b-c)^2+(c-a)^2)
b/ (a+b)*(b+c)*(c+a)+4abc=c*(a+b)^2+a*(b+c)^2+b*(c+a)^2
c/ (a+b+c)^3=a^3+b^3+c^3+3*(a+b)*(b+c)*(c+a)
Bài 2: Cho a+b+c=4m.CMR:
a/ 2ab+ a^2+ b^2- c^2=16m^2- 8mc
b/ (a+b-c/2)^2+(a-b+c/2)^2+(b+c-a/2)^2=a^2+b^2+c^2-4m^2
Ta có :
a^3+b^3+c^3-3abc
=(a+b)^3+c^3-3ab(a+b) - 3abc
=(a+b+c)[(a+b)^2-(a+b)c+c^2]-3ab(a+b+c)
=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)
=> 2(a^3+b^3+c^3-3abc)= (a+b+c)(2a^2+2b^2+2c^2-2ab-2bc-2ca)
=(a+b+c)[(a-b)^2+(b-c)^2+(c-a)^2]
Chứng minh:
(a-b)^2=a^2-2.ab+b^2
a^2-b^2=(a-b).(a+b)
(a+b)^3=a^3+3.a^2b+3.ab^2+b^3
(a-b)^3=a^3-3.a^2b+3.ab^2-b^3
(a-b)2 = (a-b).(a-b)
= a2 - ab - ab + b2
= a2 - 2ab + b2 (đpcm)
1. cho a,b,c thỏa mãn \(\dfrac{a^3}{a^2+ab+b^2}+\dfrac{b^3}{b^2+bc+c^2}+\dfrac{c^3}{a^2+ac+c^2}=1006\)
tính giá trị của m= \(\dfrac{a^3+b^3}{a^2+ab+b^2}+\dfrac{b^3+c^3}{b^2+bc+c^2}+\dfrac{c^3+a^3}{a^2+ac+c^2}\)
2. cho a+c+b=\(\dfrac{1}{2}\) , \(a^2+b^2+c^2+ab+bc+ac=\dfrac{1}{6}\).
tính p= \(\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}\)
3. cho a,b,c khác 0, và \(\dfrac{x^4+y^4+z^4}{a^4+b^4+c^4}=\dfrac{x^4}{a^4}+\dfrac{y^4}{b^4}+\dfrac{z^4}{c^4}\)tính \(x^2+y^9+z^{1945}+2017\)
bài 3
Chứng minh các đẳng thức sau:
a) (a^2 + b^2)^2 – 4a^2b^2 = (a + b)^2(a – b)^2
b) (a^2 + b^2)(x^2 + y^2) = (ax – by)^2 + (bx + ay)^2
c) a^3 – b^3 + ab(a – b) = (a – b)(a + b)^2
d)(a – b)^3 + (b – c)^3 + (c – a)^3 = 3(a – b)(b – c)(c – a)
1) Cho a + b= -2, a^2 + b^2 = 52. Tính a^3 +b^3
2) Cho a + b = 7, a^2 + b^2 = 25. TÍnh a^3 + b^3, a^4 + b^4
3) Cho a + b = 5, a^2 + b^2 = 53. Tính a^3 + b^3, a^4 + b^4
ta có: a + b=-2 ; a^2 + b^2 = 52
=> (a+b)^2 = 4 => a^2 + 2ab + b^2 = 4
=> 52 + 2ab= 4
=> 48= -2ab
=> ab= -24
a^3 + b^3 = (a+b)( a^2-ab+ b^2)
=> a^3 + b^3 = -2.(52+24)= -2. 76= -152
vì a+b+c=0 nên a=-(b+c)\Rightarrow $a^2$=$(b+c)^2$
tương tự ta có : $b^2$=$(a+c)^2$
$c^2$=$(a+b)^2$
\Rightarrow $\frac{a^2}{a^2-b^2-c^2}$+$\frac{b^2}{b^2-c^2-a^2}$+$\frac{c^2}{c^2-b^2-a^2}$
=$\frac{a^2}{(b+c)^2-b^2-c^2}$+$\frac{b^2}{(a+c)^2-a^2-c^2}$
+$\frac{c^2}{(a+b)^2-a^2-b^2}$
=$\frac{a^2}{2bc}$+$\frac{b^2}{2ac}$+$\frac{c^2}{2ab}$
=$\frac{a^3+b^3+c^3}{2abc}$
vì a+b+c=0 nên a^3+b^3+c^3=3abc(hằng đẳng thức nâng cao)
\Rightarrow $\frac{a^3+b^3+c^3}{2abc}$=$\frac{3}{2}$
Chứng minh giả thiết (a+b)^3 =a^3+3a^2b+3ab^2
(a+b).(a-b)=a^2+b^2
(a-b)^3=a^3-3a^2b+3ab^2-b^3
a^3+b^3=(a+b).(a^2-ab+b^2
a^3-b^3=(a-b).(a^2+ab+b^2
Acebb giúp mk với mk sắp phải nộp r
CM đẳng thức:(giúp m với m đang cần gấp)
a,(a-b)^2=(b-a)^2
b,(a-b)^3=-(b-a)^3
c, a^2+b^2=(a+b)^2-2ab
d,a^3+b^3=(a+b)^3-3ab(a+b)
e,a^3-b^3=(a-b)^3+3ab(a-b)
G, (a+b+c)^2=a^2+b^2+c^2+2ab+2ac+2bc
Bài 1: Cho a,b,c thỏa mãn (a+b-c)/c=(b+c-a)/a=(c+a-b)/b
tính P=(1+b/a)*(1+c/b)*(1+a/c)
Bài 2: Cho a+b+c=0
tính B=((a^2+b^2-c^2)*(b^2+c^2-a^2)*(c^2+a^2-b^2))/(10*a^2*b^2*c^2)
Bài 3: cho a^3*b^3+b^3*c^3+c^3*a^3=3*a^3*b^3*c^3
tính M(1+a/b)*(1+b/c)*(1+c/a)
Bài 4: cho 3 số a,b,c TM a*b*c=2016
tính P=2016*a/(a*b+2016*a+2016) + b/(b*c+b+2016) + c/(a*c+c+1)
Bài 5: cho a+b+c=0
tính Q=1/(a^2+b^2-c^2) + 1/(b^2+c^2-a^2) + 1/(a^2+c^2-b^2)