chứng minh : 81^10 - 27^3 - 9^21 chia hết cho 225
Bài a,
[(9²)^10]-[(3*9)^13]-(9)^21
[(9^20)(1-9)]-[(3*9)^13]
[(9^20)*(-8)]-[(3*9)^13]
[(9^20)*(-8)]-[(3^13)(9^13)]
[(9^13)*[(-8)*(9^7)-(3^13)]
[(9^13)*[(-8)(3^14)-(3^13)]
[(9^13)*[(-8)*(3)*(3^13)-(3^13)]
[(9^13)*[(3^13)*(-24-1)]
(3^26)*(3^13)*(-25)
(3^39)*(-25)
-(3^37)*(3^2)*(25)
-(3^37)*(225)
Đáp số:
Số đã cho là bội số (âm) của 225 nên chia hết cho 225
Chứng minh rằng 16n - 15n - 1 chia hết cho 225 ( với n thuộc N* )
chứng minh rằng 16n-15n-1 chia hết cho 225
Đặt Un = 16^n-15n-1
- Xét n = 1 , ta có : U1 = 16^1 - 15*1 - 1 =0 chia hết cho 225
- Giả sử Un chia hết cho 225 với n = k nào đó ( k >=1), tức là : Uk = 16^k -15k -1 chia hết cho 225
Giờ ta chỉ cần chứng minh U[k + 1] = 16^(k + 1 ) -15(k + 1) -1 chia hết cho 225 là được
**Thật vậy ta có 16^(k + 1 ) -15(k + 1) -1 = 16*16^k - 15k - 15 - 1 = 16^k -15k -1 + 15*16^k -15=Uk + 15(16^k -1) (1) Ở đây, đã có Uk chia hết cho 225 rồi, ta thấy chỉ cần chứng minh 16^k -1 chia hết cho 15 nữa là được
_________________-
Với việc chứng minh Vk = 16^k - 1 chia hết cho 15
- Xét k = 1 , ta có V1 = 15 chia hết cho 15
- Giả sử Vk chia hết cho 15 với k = h nào đó (h>= 1), tức là Vh = 16^h -1 chia hết cho 15
Giờ ta chỉ cần chứng minh V[h + 1] = 16^(h + 1) - 1 chia hết cho 15 là được
*** Thật vậy tacó 16^(h+1) - 1 = (16^h)*16 - 1 = 16^h - 1 + 15*16^h = Vh + 15*16^h chia hết cho 15 (2)
______________
Vậy từ (1) và (2) ta có được điều phãi chứng minh
16 đồng dư với 1(mod 15)
=>16n đồng dư với 1(mod 15)
=>16n-1 đồng dư với 0(mod 15)
=>16n-1 chia hết cho 15
mà 15n chia hết cho 15
=>16n-15n-1 chia hết cho 15(đpcm)
Với n=1 thì 16n – 15n – 1 = 16 – 15 – 1 = 0 ⋮ 225
Giả sử 16k – 15k – 1 ⋮ 225
Ta chứng minh 16k+1 – 15(k+1) – 1 ⋮ 225
Thực vậy: 16k+1 – 15(k+1) – 1 = 16.16k – 15k – 15 – 1
= (16k – 15k – 1) + 15.16k – 15
Theo giả thiết qui nạp 16k – 15k – 1 ⋮ 225
Còn 15.16k – 15 = 15(16k – 1) ⋮ 15.15 = 225
Kết luận: Vậy 16n – 15n – 1 ⋮ 225.
Chứng minh:16n-15n-1 chia hết cho 225 với mọi n thuộc N*
a)Cho số abc chia hết cho 37. Chứng minh rằng số cab cũng chia hết cho 37
b)tìm x:
1+3+5+7+9+...+(2x-1)=225
a)Ta có: abc\(⋮\)37 => 100.abc \(⋮\)37 => abc00 \(⋮\)37
=> (ab.1000 + c00) \(⋮\)37
=>[ab.999 + ( c00 + ab) ] \(⋮\)37
=>( ab . 99 + cab) \(⋮\)37
mà ab.999 = ab .27 .37 \(⋮\)37
=> cab \(⋮\)37
Vậy nếu abc \(⋮\)37 thì cab \(⋮\)37
b)1+3+5+7+9+...+(2x-1)=225
Với mọi x \(\in\)N, ta có 2x - 1 là số lẻ
Ta đặt A = 1 + 3 + 5 + 7 + 9+...+ (2x-1)=225
=> A là tổng của các số lẻ liên tiếp từ 1 đến (2x -1)
Số số hạng của A là:
[(2x - 1 - 1) : 2 + 1 = x (số hạng)
=> A= [(2x - 1) + 1] . x : 2 = x2
Mà A= 225 => x 2 = 225 = 152
\(\Rightarrow x=15\)
Chứng minh rằng 16n - 15n - 1 chia hết cho 225 ( với n thuộc N* )
Cho m,n là 2 số nguyên.Chứng minh rằng nếu 7(m+n)2+2mn chia hết cho 225 thì mn cũng chia hết cho 225
225=15 mũ 2
=> 2 [ 7 (m+n)2 +2mn] chia hết cho 15 mũ 2
=>14 + mn2 +4mn chia hết cho 15 mũ 2
=>14 (m+n)2 +[(m+n)2 -(m-n)2] chia hết cho 15 mũ 2
=>15(m+n)2 - (M-n)2 chia hết cho 15 mũ 2
vì 15(m+n)2 chia hết cho 15 mũ 2 => 15(m-n)2 chia hết cho 15 mũ 2
=>{m-n)2 chia hết cho 3 <=>{ m - n chia hết cho 3
{(m-n)2 chia hết cho 5 <=> m-n chia hết cho 5
mà 3,5 =1=> m-n chia hết cho 15
=>(m-n)2 chia hết cho 15 mũ 2
tương tự (m+n)2 chia hết cho 15 mũ 2
=> mn chia hết cho 225
Chứng minh với n là số tự nhiên thì
a) \(2^{4n}-1\)chia hết cho 15
b) \(16^n-15n-1\)chia hết cho 225
a) Với \(n\in N\Rightarrow2^{4n}-1=16^n-1=\left(16-1\right).\left(16^{n-1}+16^{n-2}+...+1\right)\)
\(=15.\left(16^{n-1}+16^{n-2}+...+1\right)⋮15\)
b) Với \(n\in N\Rightarrow16^n-15n-1=\left(16^n-1\right)-15n\)
mà \(\left(16^n-1\right)⋮15\left(cma\right);15n⋮15\)
\(\Rightarrow16^n-15n-1⋮15\)
Cho m,n là 2 số nguyên.Chứng minh rằng nếu 7(m+n)2+2mn chia hết cho 225 thì mn cũng chia hết cho 225
225=152
=> \(2\left[7\left(m+n\right)^2+2mn\right]⋮15^{^2}\)
\(\Leftrightarrow14\left(m+n\right)^2+4mn⋮15^2\)
\(\Leftrightarrow14\left(m+n\right)^2+\left[\left(m+n\right)^2-\left(m-n\right)^2\right]⋮15^2\)
\(\Leftrightarrow15\left(m+n\right)^2-\left(m-n\right)^2⋮15^2\)
Vì \(15\left(m+n\right)^2⋮15\Rightarrow\left(m-n\right)^2⋮15\)
\(\Rightarrow\left\{{}\begin{matrix}\left(m-n\right)^2⋮3\\\left(m-n\right)^2⋮5\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m-n⋮3\\m-n⋮5\end{matrix}\right.\)
mà (3,5)=1 => (m-n)\(⋮\)15
=> (m-n)2\(⋮\)152
Tương tự 15(m+n)2\(⋮\)152
=> mn \(⋮\)225