Giải phương trình
\(\sqrt{x^{\text{2}}-4x+13}-x^{\text{2}}=7-4x\)
Giải phương trình : x2+4x=\(2\sqrt{2\text{x}+3}\)
ĐK: \(2x+3\ge0\Rightarrow x\ge\frac{-3}{2}\)
Pt \(\Leftrightarrow x^2+4x+5-2\sqrt{2x+3}=0\)\(\Leftrightarrow x^2+2x+1+2x+3-2\sqrt{2x+3}+1=0\)
\(\Leftrightarrow\left(x+1\right)^2+\left(\sqrt{2+3}-1\right)^2=0\)\(\Leftrightarrow\hept{\begin{cases}x+1=0\\\sqrt{2x+3}-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\left(tm\text{đ}k\right)\\2x+3=1\end{cases}}}\)
Vậy x=-1 là nghiệm của pt.
Giải hệ phương trình:
\(\hept{\begin{cases}\text{}\text{}\text{}\text{}\text{}\sqrt{x}+2\sqrt{x+3}=7-\sqrt{x^2+3}\\\sqrt{x+y}+\sqrt{7-y}=y^2-6y+13\end{cases}}\)
giải phương trình: \(\sqrt{\text{x}^2-\text{x}+1}+\sqrt{-2\text{x}^2+\text{x}+2}=\dfrac{\text{ }\text{x}^2-4\text{x}+7}{2}\)
Giải bằng bất đẳng thức Cô si: (ĐK: \(x^2-x+1\ge0;-2x^2+x+2\ge0;x^2-4x+7\)
Ta có: \(x^2-x+1+1\ge2\sqrt{x^2-x+1}\Leftrightarrow\sqrt{x^2-x+1}\le\dfrac{x^2-x+2}{2}\left(1\right)\\ T,T:\sqrt{-2x^2+x+2}\le\dfrac{-2x^2+x+3}{2}\left(2\right)\\ \left(1\right);\left(2\right)\Rightarrow\sqrt{x^2-x+1}+\sqrt{-2x^2+x+2}\le\dfrac{x^2-x+2-2x^2+x+3}{2}=\dfrac{-x^2+5}{2}\\ \Rightarrow\sqrt{x^2-x+1}+\sqrt{-2x^2+x+2}-\dfrac{x^2-4x+7}{2}\le\dfrac{-x^2+5-x^2+4x-7}{2}\\
=\dfrac{-2x^2+4x-2}{2}\\
=-x^2+2x-1
\\
\Rightarrow-\left(x-1\right)^2\ge0\)
Điều này chỉ thỏa 1 điều kiên khi x-1=0 ⇔x=1(nhận
Vậy x=1 là nghiệm cuả phương trình
Giải phương trình:
a)\(\sqrt{x^2+x}=x\)
b)\(\sqrt{1-x^2}=x-1\)
c)\(\sqrt{x^2\text{-4x+3}}=x-2\)
a) ĐK: \(\left[{}\begin{matrix}x\ge0\\x\le-1\end{matrix}\right.\)
pt <=> \(\left\{{}\begin{matrix}x\ge0\\x^2+x=x^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x=0\left(tm\right)\end{matrix}\right.\)
Vậy, pt có nghiệm duy nhất là x=0
b) ĐK: \(-1\le x\le1\)
pt <=> \(\left\{{}\begin{matrix}x\ge1\\1-x^2=x^2-2x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\2x^2-2x=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\2x\left(x-1\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\\left[{}\begin{matrix}x=0\left(l\right)\\x=1\left(tm\right)\end{matrix}\right.\end{matrix}\right.\)
Vậy, pt có nghiệm duy nhất là x=1
c) ĐK: \(\left[{}\begin{matrix}x\ge3\\x\le1\end{matrix}\right.\)
pt <=> \(\left\{{}\begin{matrix}x\ge2\\x^2-4x+3=x^2-4x+4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\0=1\left(l\right)\end{matrix}\right.\)
Vậy, phương trình vô nghiệm với mọi x
a: =>x^2+x=x^2 và x>=0
=>x=0
b: =>1-x^2=(x-1)^2 và x>=1
=>1-x^2-x^2+2x-1=0 và x>=1
=>-2x^2+2x=0 và x>=1
=>-2x(x-1)=0 và x>=1
=>x=1
c: =>x^2-4x+3=(x-2)^2 và x>=2
=>x^2-4x+3=x^2-4x+4 và x>=2
=>3=4(vô lý)
=>PTVN
\(\text{giải phương trình: }\sqrt{x-1}+\sqrt{9x-1}-\sqrt{4x-4}=4\)
Điều kiện: \(x\ge1\)
\(\sqrt{x-1}+\sqrt{9x-1}-\sqrt{4x-4}=4\)
\(\Leftrightarrow\sqrt{x-1}+\sqrt{9x-1}-2\sqrt{x-1}=4\)
\(\Leftrightarrow\sqrt{9x-1}-\sqrt{x-1}=4\)
\(\Leftrightarrow\sqrt{9x-1}=4+\sqrt{x-1}\)
\(\Leftrightarrow9x-1=16+8\sqrt{x-1}+x-1\)
\(\Leftrightarrow x-2=\sqrt{x-1}\)\(\left(x\ge2\right)\)
\(\Leftrightarrow x^2-4x+4=x-1\)
\(\Leftrightarrow x^2-5x+5=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{5-\sqrt{5}}{2}\left(loai\right)\\x=\frac{5+\sqrt{5}}{2}\left(nhan\right)\end{cases}}\)
Giải phương trình vô tỉ sau:
a, \(\sqrt{1+\sqrt{1-x^2}}\left[\sqrt{\left(1+x\right)^6}-\sqrt{\left(1-x\right)^3}\right]=1+\sqrt{1-x^2}\)
b, \(\sqrt{x+1}=x^2+4x+5\)
c, \(\sqrt{x+1}=x^{\text{4}}+4x^2+5\)
d, \(2x^2+4x=\sqrt{\frac{x+3}{2}}\)
d)\(2x^2+4x=\sqrt{\frac{x+3}{2}}\)
ĐK:\(x\ge-3\)
\(\Leftrightarrow4x^4+16x^3+16x^2=\frac{x+3}{2}\)
\(\Leftrightarrow\frac{8x^4+32x^3+32x^2-x-3}{2}=0\)
\(\Leftrightarrow8x^4+32x^3+32x^2-x-3=0\)
\(\Leftrightarrow\left(2x^2+3x-1\right)\left(4x^2+10x+3\right)=0\)
d)\(2x^2+4x=\sqrt{\frac{x+3}{2}}\)
ĐK:\(x\ge-3\)
\(\Leftrightarrow4x^4+16x^3+16x^2=\frac{x+3}{2}\)
\(\Leftrightarrow\frac{8x^4+32x^3+32x^2-x-3}{2}=0\)
\(\Leftrightarrow8x^4+32x^3+32x^2-x-3=0\)
\(\Leftrightarrow\left(2x^2+3x-1\right)\left(4x^2+10x+3\right)=0\)
giải phương trình
a) x - \(\sqrt{x-1}\) -3 = 0
b)\(\sqrt{4x^2+8x+4}\) = x - 3
c) 2x + 5 +\(2\sqrt{2x+5}\) = 13
giải giúp mình mấy phương trình này với
a, \(16x^4+5=6\sqrt[3]{4x^3+x}\)
b,\(\sqrt{\text{-}4x^4y^2+16x^2y+9}-\sqrt{x^2y^2\text{-}2y^2}=2\left(x^2+\frac{1}{x^2}\right)\)
c,\(\sqrt{x^2+2y^2\text{-}6x+4y+11}+\sqrt{x^2+3y^2+2x+6y+4}=4\)
d, \(2\sqrt[4]{27x^2+24x+\frac{28}{3}}=1+\sqrt{\frac{27}{2}x+6}\)
e, \(\frac{2\sqrt{2}}{\sqrt{x+1}}+\sqrt{x}=\sqrt{x+9}\)
Giải phương trình:
\(x^2+4x+7=\left(x+4\right)\sqrt{x^2+7}\)
ĐKXĐ: mọi \(x\)
Ta có \(x^2+4x+7=\left(x+4\right)\sqrt{x^2+7}\)
\(\Leftrightarrow\left(x+4\right)\sqrt{x^2+7}-x^2-4x-7=0\)
\(\Leftrightarrow\left(x+4\right)\left(\sqrt{x^2+7}-4\right)-x^2-4x+4x-7+16=0\) ( thêm bớt )
\(\Leftrightarrow\left(x+4\right)\left(\sqrt{x^2+7}-4\right)-\left(x^2-9\right)=0\)
\(\Leftrightarrow\left(x+4\right)\dfrac{x^2-9}{\sqrt{x^2+7}+4}-\left(x^2-9\right)=0\)
\(\Leftrightarrow\left(x^2-9\right)\left(\dfrac{x+4}{\sqrt{x^2+7}+4}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-9=0\\\dfrac{x+4}{\sqrt{x^2+7}+4}-1=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\pm3\\\dfrac{x+4}{\sqrt{x^2+7}+4}=1\left(\text{*}\right)\end{matrix}\right.\)
Giải (*), ta được phương trình
\(\left(\text{*}\right)\Leftrightarrow x+4=\sqrt{x^2+7}+4\)
\(\Leftrightarrow\sqrt{x^2+7}=x\)
\(\Leftrightarrow x^2+7=x^2\)
\(\Leftrightarrow7=0\) ( vô lý )
Suy ra phương trình (*) vô nghiệm
Vậy \(S=\left\{\pm3\right\}\)