Cho góc xOy khác góc bẹt ,Ot là tia phân giác của góc đó.Qua điểm H thuộc tia Ot kẻ đường vuông góc với Ot,nó cắt Ox và Oy theo thứ tự ở A và B
a)Chứng minh H là chung điểm của AB
b)lấy điểm C thuộc tia Ot,chứng minh rằng ACO = BCO
Cho góc xOy khác góc bẹt, Ot là tia phân giác của góc đó.Qua điểm H thuộc tia Ot, kẻ đường vuông góc với Ot, nó cắt Ox và Oy theo thứ tự ở A và B
Ta có hình vẽ:
Xét tam giác AOH và tam giác BOH có
\(\widehat{AOH}\)=\(\widehat{BOH}\) (GT)
\(\widehat{AHO}\)=\(\widehat{BHO}\) (GT)
OH: cạnh chung
Vậy \(\Delta\)AOH = \(\Delta\)BOH (g.c.g)
Cho góc xOy khác góc bẹt,Ot lá tia phân giác của góc đó.Qua điểm H thuộc tia Ot, kẻ đường vuông góc với Ot, nó cắt Ox và Oy theo thứ tự ở A và B.
a) Chứng minh rằng OA=OB.
b) Lấy điểm C thuộc tia Ot,chứng minh rằng CA=CB và góc OAC = góc OBC
Ta có Hình vẽ
a) xét \(\Delta OAH\&\Delta OBH\)có
\(\widehat{H1}=\widehat{H2}\left(=90^o\right)\)
OH chung
\(\widehat{O1}=\widehat{O2}\)
\(\Rightarrow\Delta OAH=\Delta OBH\)
=> OA=OB ( 2 cạnh tương ứng )
Ta có hình vẽ:
a/ Xét tam giác OAH và tam giác OBH có:
\(\widehat{AOH}\)=\(\widehat{BOH}\)(GT)
OH: cạnh chung
\(\widehat{AHO}\)=\(\widehat{BHO}\) = 900
=> tam giác OAH = tam giác OBH (g.c.g)
=> OA = OB (2 cạnh tương ứng)
b/ Xét tam giác OAC và tam giác OBC có:
OC: cạnh chung
\(\widehat{AOC}\)=\(\widehat{BOC}\)(GT)
OA = OB (câu a)
Vậy tam giác OAC = tam giác OBC (c.g.c)
=> CA = CB (2 cạnh tương ứng)
=> \(\widehat{OAC}\)=\(\widehat{OBC}\) (2 góc tương ứng)
Cho góc xOy khác gọc bẹt Ot là tia phân giác của góc đó. Qua điểm H thuộc tia Ot, kẻ đường vuông góc với tia Ot, nó cắt Ox và Oy theo thứ tự ở A và B.
Lấy điểm C thuộc tia Ot. Chứng minh rằng CA = CB và O A C ^ = O B C ^
ΔAOC và ΔBOC có:
OA = OB (cmt)
∠ AOC = ∠ BOC (vì Ot là tia phân giác góc xOy)
OC cạnh chung
⇒ ΔAOC = ΔBOC (c.g.c)
⇒ CA = CB (hai cạnh tương ứng)
∠ OAC = ∠ OBC ( hai góc tương ứng).
Cho góc xOy nhọn,Ot là tia phân giác của góc đó.Qua điểm H thuộc tia Ot,kẻ đường thẳng vuông góc với Ot,nó cắt Ox và Oy theo thứ tự tại A và B.
1)Chứng minh tam giác OAC=tam giác BOH
2)Lấy điểm C thuộc tia Ht,chứng minh rằng:góc OAC=góc OBC
Cho góc xOy khác góc bẹt, Ot là tia phân giác của góc đó. Qua điểm H thuộc Ot, kẻ đường vuông góc với Ot, nó cắt Ox và Oy theo thứ tự ở A và B.
a) Chứng minh rằng tam giác AOH = tam giác BOH
B) chứng minh tia tia Ot là tia phân giác của góc xOy
a) ∆AOH và ∆BOH có:
ˆAOH=ˆBOH (gt) OH là cạnh chung
∆AOH =∆BOH( g.c.g)
Vậy OA=OB.
b) ∆AOC và ∆BOC có:
OA=OB (cmt)
ˆOAC = ˆOAB (gt)
OC cạnh chung.
Nên ∆AOC= ∆BOC(g.c.g)
Suy ra: CA=CB (hai cạnh tương ứng)
ˆOAC= ˆOBC ( góc tương ứng).
cho góc xOy khác góc bẹt ,Ot là tia phân giác của góc đó.Qua điểm H thuộc tia Ot,kẻ đường vuông góc với Ot,nó cắt Ox và Oy theo thứ tự ở A và B.
a.Chứng minh rằng OA=OB
b.lấy điểm C thuộc tia Ot,chứng minh rằng CA=CB và OAC=OBC
cho góc xOy khác góc bẹt . Ot là phân giác của góc đó . Qua điểm H thuộc tia Ot , kẻ đường vuông góc với Ot , nó cắt Ox và Oy theo thứ tự là A và B.a Chứng minh rằng OA OBb Lấy điểm C thuộc tia Ot , chứng minh rằng CA CB vàCO là tia phân giác của góc ACB
CẢNH BÁO! Tiếp tục đọc, hoặc linh hồn của bạn sẽ được thực hiện, ngay cả khi bạn đọc từ "cảnh báo"! Có một lần là một người tên là Duke Hunapon. Anh ta lười biếng, và rất bảnh bao. Anh ấy luôn mặc một chiếc áo khoác, không có vấn đề gì ở bên ngoài. Anh ta có một người anh trai tên là Michael, người luôn làm anh ta vây quanh. Một ngày nọ, Michael bị giết, và nó ảnh hưởng rất nhiều đến Duke. Anh ta phát điên và bắt đầu giết người. Chẳng mấy chốc, anh ta đã chiến đấu với ai đó và bị giết. Bây giờ, anh ta đi lang thang xung quanh như một bộ xương cao với một chiếc áo sơ mi màu đỏ, và cùng một chiếc áo hoodie mà Duke đã mặc. Bộ xương này được gọi là "Swapfell Papyrus", và anh ta sẽ giết bạn nếu bạn không đăng bài này trên 15 phần bình luận của bất kỳ trang web nào trước khi đi ngủ. Nếu bạn thất bại, và bạn thức dậy khi anh ta ở trong phòng của bạn, cái chết của bạn sẽ chậm và rất đau đớn. Một cô gái tên Lily Lilupanin đọc điều này, và không nghe. Cô bị hãm hiếp và bị giết trong giấc ngủ. Nếu bạn sao chép và dán vào 15 phần bình luận của bất kỳ trang web nào trước khi đi ngủ, Swapfell Papyrus sẽ đảm bảo bạn cảm thấy an toàn Rút gọn
Cho góc xOy khác góc bẹt, Ot là tia phân giác của góc đó. Qua điểm H thuộc tia Ot, kẻ đường vuông góc với Ot, nó cắt Ox và Oy theo thứ tự ở A và B.
a) Chứng minh rằng OA = OB
b) Lấy điểm C thuộc tia Ot, chứng minh rằng CA = CB và góc OAC = góc OBC
a)
xét \(\Delta AHO\) và \(\Delta BHO\) có:
OH(chung)
\(\widehat{AHO}=\widehat{BHO}=90^o\)
\(\widehat{O_1}=\widehat{O_2}\left(gt\right)\)
\(\Rightarrow\Delta AHO=\Delta BHO\left(g.c.g\right)\)
=> OA=OB
b)
xét \(\Delta ACO\) và \(\Delta BCO\) có:
OA=OB(theo câu a)
\(\widehat{O_1}=\widehat{O_2}\)(gt)
OC(chung)
=>\(\Delta ACO=\Delta ABO\left(c.g.c\right)\)
=>\(\begin{cases}\widehat{OAC}=\widehat{OBC}\\CA=CB\end{cases}\)