cho tam giác ABC vuông cân tại A. vẽ AD vuông góc BC. lấy M bất kì thuộc BC. vẽ ME vuông góc AB, MF vuông góc AC. tính số đo của góc EDF
Cho tam giác ABC cân tại A. Vẽ đường cao BH của AC. Cho 1 điểm M bất kì thuộc BC. Vẽ MD vuông góc AB, ME vuông góc với AC, MF vuông góc với BH. Chứng minh khi M chạy trên đáy BC thì MD+ME có giá trị không đổi.
Cho tam giác ABC vuông cân tại C, M là điểm bất kì trên cạnh AB (M không trùng với A, B). Vẽ ME vuông góc AC tại E, MF vuông góc với BC tại F. gọi D là trung điểm của AB. CM: ΔDEF vuông cân
Ta có; ΔABC vuông cân tại C
mà CD là đường trung tuyến
nên CD\(\perp\)AB và CD là phân giác của \(\widehat{ACB}\)
=>\(\widehat{ACD}=\widehat{BCD}=\dfrac{90^0}{2}=45^0\)
Gọi O là giao điểm của CM với FE
Xét tứ giác CEMF có
\(\widehat{CEM}=\widehat{CFM}=\widehat{FCE}=90^0\)
=>CEMF là hình chữ nhật
=>CM cắt EF tại trung điểm của mỗi đường và CM=EF
=>O là trung điểm chung của CM và EF và CM=EF
=>OM=OC=OE=OF
=>O là tâm đường tròn ngoại tiếp tứ giác CFME
\(\widehat{CEM}=\widehat{CFM}=\widehat{CDM}=90^0\)
Do đó: C,E,M,F,D cùng thuộc đường tròn đường kính CM
=>C,E,M,F,D cùng thuộc (O)
=>D thuộc (O)
Xét (O) có
ΔDFE nội tiếp
FE là đường kính
Do đó: ΔDFE vuông tại D
Xét tứ giác FDEC có
\(\widehat{FCE}+\widehat{FDE}=180^0\)
=>FDEC là tứ giác nội tiếp
=>\(\widehat{DFE}=\widehat{DCE}=\widehat{DCA}=45^0\)
Xét ΔDFE vuông tại D có \(\widehat{DFE}=45^0\)
nên ΔDFE vuông cân tại D
1) Tam giác ABC vuông tại A. Vẽ ở phía ngoài các tam giác ABD, ACE vuông cân tại A. Có AH là đường cao tam giác ABC, AH cắt DE tại K. CMR: K là trung điểm DE.
2) Cho tam giác cân ABC, M bất kì thuộc BC. Kẻ ME, MF vuông góc với AC, AB. Kẻ BH vuông góc AC. Chứng minh ME + MF = BH
cho tam giác ABC cân tại A ,Tia phân giác của góc BAC cắt cạnh BC tại M .
a) chứng minh tam giác AMB =tam giác AMC
b)Vẽ ME vuông góc với AB ( E thuộc AB);MF vuông góc với AC(F thuộc AC) .Chứng minh tam giác MEF cân
c) Chứng minh AM vuông góc với EF
d) Vẽ EI vuông góc BC tại I.Gọi K là giao điểm của đường thẳng EI và AC. chứng minh A là trung điểm của KF
a: Xét ΔAMB và ΔAMC có
AB=AC
\(\widehat{BAM}=\widehat{CAM}\)
AM chung
Do đó:ΔAMB=ΔAMC
b: Xét ΔAEM vuông tại E và ΔAFM vuông tại F có
AM chung
\(\widehat{EAM}=\widehat{FAM}\)
Do đó:ΔAEM=ΔAFM
Suy ra:ME=MF
hay ΔMEF cân tại M
c: Ta có: AE=AF
ME=MF
Do đó: AM là đường trung trực của FE
hay AM⊥FE
cho tam giác ABC cân tại A ,Tia phân giác của góc BAC cắt cạnh BC tại M .
a) chứng minh tam giác AMB =tam giác AMC
b)Vẽ ME vuông góc với AB ( E thuộc AB);MF vuông góc với AC(F thuộc AC) .Chứng minh tam giác MEF cân
c) Chứng minh AM vuông góc với EF
d) Vẽ EI vuông góc BC tại I.Gọi K là giao điểm của đường thẳng EI và AC. chứng minh A là trung điểm của KF
a, Xét tam giác AMB và tam giác AMC có
AM _ chung
AB = AC
^MAB = ^MAC
Vậy tam giác AMB = tam giác AMC (c.g.c)
b, Xét tam giác AEM và tam giác AFM có
AM _ chung
^MAE = ^MAF
Vậy tam giác AEM = tam giác AFM (ch-gn)
=> AE = AF ( 2 cạnh tương ứng )
=> EM = FM ( 2 cạnh tương ứng )
Xét tam giác MEF có EM = FM
Vậy tam giác MEF cân tại M
c, AE/AB = AF/AC => EF // BC
mà tam giác ABC cân tại A có AM là phân giác
đồng thời là đường cao
=> AM vuông BC
=> AM vuông EF
Cho tam giác ABC vuông tại A ( AB < AC ). Gọi M là trung điểm BC, vẽ ME vuông góc AB tại E và MF vuông góc AC tại F. Gọi D là điểm đối xứng với M qua E. Vẽ đường cao AH của tam giác ABC. Tính số đo góc EHF
Cho tam giác ABC vuông cân tại A. Vẽ AM vuông góc BC. Trên cạnh AB lấy điểm E, trên cạnh AC lấy điểm F sao cho ME vuông góc với MF
a, CMR các tam giác MAB, MAC vuông cân
b, Tính số đo các góc MEF và MFE
Cho tam giác ABC vuông cân tại A. Vẽ MA vuông góc với BC. Trên cạnh AB lấy điểm E, trên cạnh AC lấy điểm F sao cho ME vuông góc với MF
a, CMR các tam giác MAB; MAC vuông cân.
b, Tính số đo các góc MEF và MFE
cho tam giác ABC cân tại A , vẽ BH vuông góc AC tại H . từ điểm M trên cạnh BC , vẽ ME vuông góc AB tại E , MF vuông góc AC tai F . chứng minh BM= ME+ MF