tìm min A=2x+\(\dfrac{3x}{x+2}\)
2,Tìm Min: A=\(\dfrac{3x^2-10x+3}{x^2-2x+4}\) B=\(\dfrac{x-1}{x^2-4x+4}\) C=\(\dfrac{x^2-x-1}{x^2-4x+4}\)
Tìm min \(\dfrac{3x^2-2x-1}{\left(x+1\right)^2}\)
Đặt \(x+1=t\Rightarrow x=t-1\)
\(P=\dfrac{3\left(t-1\right)^2-2\left(t-1\right)-1}{t^2}=\dfrac{3t^2-8t+4}{t^2}=\dfrac{4}{t^2}-\dfrac{8}{t}+3=4\left(\dfrac{1}{t}-1\right)^2-1\ge-1\)
\(P_{min}=-1\) khi \(t=1\Rightarrow x=0\)
tìm max, min
a) y=\(\dfrac{\sqrt{x-1}}{x}\) trên \([1;5]\)
b) y=\(\dfrac{x+3}{\sqrt{x^2+1}}\) trên \([1;3]\)
c) y=\(\sin^2x-\cos x+1\)
d) y=\(\sin^3x-3\sin^2x+2\)
a0
a.
\(y'=\dfrac{2-x}{2x^2\sqrt{x-1}}=0\Rightarrow x=2\)
\(y\left(1\right)=0\) ; \(y\left(2\right)=\dfrac{1}{2}\) ; \(y\left(5\right)=\dfrac{2}{5}\)
\(\Rightarrow y_{min}=y\left(1\right)=0\)
\(y_{max}=y\left(2\right)=\dfrac{1}{2}\)
b.
\(y'=\dfrac{1-3x}{\sqrt{\left(x^2+1\right)^3}}< 0\) ; \(\forall x\in\left[1;3\right]\Rightarrow\) hàm nghịch biến trên [1;3]
\(\Rightarrow y_{max}=y\left(1\right)=\dfrac{4}{\sqrt{2}}=2\sqrt{2}\)
\(y_{min}=y\left(3\right)=\dfrac{6}{\sqrt{10}}=\dfrac{3\sqrt{10}}{5}\)
c.
\(y=1-cos^2x-cosx+1=-cos^2x-cosx+2\)
Đặt \(cosx=t\Rightarrow t\in\left[-1;1\right]\)
\(y=f\left(t\right)=-t^2-t+2\)
\(f'\left(t\right)=-2t-1=0\Rightarrow t=-\dfrac{1}{2}\)
\(f\left(-1\right)=2\) ; \(f\left(1\right)=0\) ; \(f\left(-\dfrac{1}{2}\right)=\dfrac{9}{4}\)
\(\Rightarrow y_{min}=0\) ; \(y_{max}=\dfrac{9}{4}\)
d.
Đặt \(sinx=t\Rightarrow t\in\left[-1;1\right]\)
\(y=f\left(t\right)=t^3-3t^2+2\Rightarrow f'\left(t\right)=3t^2-6t=0\Rightarrow\left[{}\begin{matrix}t=0\\t=2\notin\left[-1;1\right]\end{matrix}\right.\)
\(f\left(-1\right)=-2\) ; \(f\left(1\right)=0\) ; \(f\left(0\right)=2\)
\(\Rightarrow y_{min}=-2\) ; \(y_{max}=2\)
Bài 1)tìm Min hay Max
a) G=\(\dfrac{2}{x^2+8}\)
b) H=\(\dfrac{-3}{x^2-5x+1}\)
Bài 2) Tìm Min hay Max
a)D=\(\dfrac{2x^2-16x+41}{x^2-8x+22}\)
b)E=\(\dfrac{4x^4-x^2-1}{\left(x^2+1\right)^2}\)
c)G=\(\dfrac{3x^2-12x+10}{x^2-4x+5}\)
1.
\(G=\dfrac{2}{x^2+8}\le\dfrac{2}{8}=\dfrac{1}{4}\)
\(G_{max}=\dfrac{1}{4}\) khi \(x=0\)
\(H=\dfrac{-3}{x^2-5x+1}\) biểu thức này ko có min max
2.
\(D=\dfrac{2x^2-16x+41}{x^2-8x+22}=\dfrac{2\left(x^2-8x+22\right)-3}{x^2-8x+22}=2-\dfrac{3}{\left(x-4\right)^2+6}\ge2-\dfrac{3}{6}=\dfrac{3}{2}\)
\(D_{min}=\dfrac{3}{2}\) khi \(x=4\)
\(E=\dfrac{4x^4-x^2-1}{\left(x^2+1\right)^2}=\dfrac{-\left(x^4+2x^2+1\right)+5x^4+x^2}{\left(x^2+1\right)^2}=-1+\dfrac{5x^4+x^2}{\left(x^2+1\right)^2}\ge-1\)
\(E_{min}=-1\) khi \(x=0\)
\(G=\dfrac{3\left(x^2-4x+5\right)-5}{x^2-4x+5}=3-\dfrac{5}{\left(x-2\right)^2+1}\ge3-\dfrac{5}{1}=-2\)
\(G_{min}=-2\) khi \(x=2\)
Bài 1: Giải phương trình:
a) 2x2-6=0
b)x3-5x2+6x=0
c) \(\dfrac{3}{x-1}+\dfrac{2}{x^{2^{ }}+x+1}=\dfrac{3x^2}{x^3-1}\)
Bài 2: Tìm MIN của
A=\(\dfrac{2}{-x^2-2x-2}\)
Bài 2:
\(A=\dfrac{2}{-x^2-2x-2}=\dfrac{-2\left(-x^2-2x-2\right)-2x^2-4x-2}{-x^2-2x-2}\) \(=-2+\dfrac{2\left(x+1\right)^2}{-x^2-2x-2}\ge-2\)
Dấu bằng xảy ra \(\Leftrightarrow x+1=0\Leftrightarrow x=-1\)
Vậy \(A_{Min}=-2\) khi \(x=-1\)
Bài 1:
a) Ta có: \(2x^2-6=0\)
\(\Leftrightarrow2x^2=6\)
\(\Leftrightarrow x^2=3\)
hay \(x\in\left\{\sqrt{3};-\sqrt{3}\right\}\)
Vậy: \(S=\left\{\sqrt{3};-\sqrt{3}\right\}\)
tìm Min A=x^2-2x+1999/x^2-3x+2 : x^3/x^2-3x^2+2x
Tìm min :
N = \(\dfrac{3x^2+2x+5}{4x^2+4x+1}\)
\(N=\dfrac{57x^2+38x+95}{19\left(4x^2+4x+1\right)}=\dfrac{14\left(4x^2+4x+1\right)+\left(x^2-18x+81\right)}{19\left(4x^2+4x+1\right)}=\dfrac{14}{19}+\left(\dfrac{x-9}{2x+1}\right)^2\ge\dfrac{14}{19}\)
\(N_{min}=\dfrac{14}{19}\) khi \(x=9\)
Nếu đặt ẩn: \(N=\dfrac{3x^2+2x+5}{\left(2x+1\right)^2}\)
Đặt \(2x+1=t\Leftrightarrow x=\dfrac{t-1}{2}\)
\(\Rightarrow N=\dfrac{3\left(\dfrac{t-1}{2}\right)^2+2\left(\dfrac{t-1}{2}\right)+5}{t^2}=\dfrac{3t^2-2t+19}{4t^2}=\dfrac{19}{4t^2}-\dfrac{1}{2t}+\dfrac{3}{4}\)
\(N=\dfrac{19}{4}\left(\dfrac{1}{t}-\dfrac{1}{19}\right)^2+\dfrac{14}{19}\ge\dfrac{14}{19}\)
tìm x min
a)A=\(\dfrac{2x^2+10}{x^2+11}\)
b)B=\(\dfrac{3x^2+2}{2x^2+3}\)
c)C=/3x-5+3x-3/
d)D=//x-2014+/x+2017//+2018
1. Tìm Min
a, 3x^2 + 5x
b, (2x-1)^2 - x^2
2.Cho x+y=2. Tìm Min A = x^2+y^2
3. tìm Min A = x^2 + 6y^2 + 4xy - 2x - 8y + 2016