Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
13 tháng 2 2019 lúc 16:49

xtanx + ln cosx + 1 cosx + C

Hướng dẫn: Đặt u = x + sinx, dv = d(tanx)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
7 tháng 8 2018 lúc 10:18

sin x - x + 1 cos x + 1 3 cos 3 x + C

Hướng dẫn: Đặt u = x + sin 2 x , dv = sinxdx

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
29 tháng 4 2019 lúc 15:46

x 4 4 + x 3 3 ln x - 1 3 + C

Hướng dẫn: Đặt u = x + lnx; dv = x 2 dx

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
20 tháng 8 2019 lúc 7:45

 

 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
5 tháng 3 2018 lúc 11:31

Đáp án C

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
15 tháng 5 2017 lúc 2:30

Chọn C.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
4 tháng 4 2018 lúc 18:15

Đáp án C

Chú ý

* Theo định nghĩa, nguyên hàm của hàm số f(x) là các hàm số F(x) thõa mãn điều kiện  F ' x = f x , ∀ x ∈ K

* Để tìm họ nguyên hàm của hàm số  f(x), các em chỉ cần tìm một nguyên hàm F(x) của nó

Bắc Băng Dương
Xem chi tiết
Nguyễn Bình Nguyên
3 tháng 3 2016 lúc 21:50

Đối với cả ba nguyên hàm đã cho, ta sẽ áp dụng liên tiếp hai làn lấy nguyên hàm từng phần và trong hai lần việc chọn hàm \(u=u\left(x\right)\) là tùy ý ( còn \(dv\) là phần còn lại của biểu thức dưới dấu nguyên hàm. Sau phép lấy nguyên hàm từng phần kép đó ta sẽ thu được một phương trình bậc nhất với ẩn là nguyên hàm cần tìm

a) Đặt \(u=e^{2x}\) ,\(dv=\sin3xdx\)

Từ đó \(du=2e^{2x}dx\)   , \(v=\int\sin3xdx=-\frac{1}{3}\cos3xdx\) Do đó : 

\(I_1=-\frac{1}{3}e^{2x}\cos3x+\frac{2}{3}\int e^{2x}\cos3xdx\)

\(=-\frac{1}{3}e^{2x}\cos3x+\frac{2}{3}.I'_1\)\(I'_1=\int e^{2x}\cos3xdx\)

Ta áp dụng công thức lấy nguyên hàm từng phần

Đặt \(u=e^{2x}\)  ; \(dv=\cos3xdx\)   Khi đó \(du=2^{2x}dx\)\(v=\frac{1}{3}\sin2x\)

Do đó \(I'_1=\frac{1}{3}e^{2x}\sin3x-\frac{2}{3}\int e^{2x}\sin3xdx\) Như vậy :

\(I_1=-\frac{1}{3}e^{2x}\cos3x+\frac{2}{9}e^{2x}\sin3x-\frac{4}{9}\int e^{2x}\sin3xdx\)

\(I_1=\int e^{2x}\sin3xdx\)

Tức là \(I_1=-\frac{1}{3}e^{2x}\cos3x+\frac{2}{9}\sin3x-\frac{4}{9}I_1\)

Ta có \(I_1=\frac{3}{13}e^{2x}\left(\frac{2}{3}\sin3x-\cos3x\right)+C\)

Nguyễn Bình Nguyên
3 tháng 3 2016 lúc 22:18

b) Đặt \(u=e^{-x}\) ; \(dv=\cos\frac{x}{2}dx\)

Từ đó :

\(du=-e^{-x}dx\)   ; \(v=\int\cos\frac{x}{2}dx=2\int\cos\frac{x}{2}d\left(\frac{x}{2}\right)=2\sin\frac{x}{2}\)

Do đó :

\(I_2=2e^{-x}\sin\frac{x}{2}+2\int e^{-x}\sin\frac{x}{2}dx\) (b)

\(\int e^{-x}\sin\frac{x}{2}dx=I'_2\)

Ta cần tính \(I'_2\)  Đặt \(u=e^{-x}\)   ; \(dv=\sin\frac{x}{2}dx\)

Từ đó :

\(du=-e^{-x}dx\)   ; \(v=\int\sin\frac{x}{2}dx=-2\cos\frac{x}{2}\)

Do đó :

\(I'_2=-2e^{-x}\cos\frac{x}{2}-2\int e^{-x}\cos\frac{x}{2}dx\)

    \(=-2e^{-x}\cos\frac{x}{2}-2I_2\)

Thế \(I'_2\)   vào (b) ta thu được phương trình bậc nhất với ẩn là \(I_2\)

\(I_2=2e^{-x}\sin\frac{x}{2}+2\left[-2e^{-x}\cos\frac{x}{2}-2I_2\right]\)

hay là

\(5I_2=2e^{-x}\sin\frac{x}{2}-4e^{-x}\cos\frac{x}{2}\) \(\Rightarrow\) \(I_2=\frac{2}{5}e^{-x}\left(\sin\frac{x}{2}-2\cos\frac{x}{2}\right)+C\)

Vũ Nguyễn Gia Hiển
4 tháng 3 2016 lúc 21:57

c) Trước khi áp dụng công thức lấy nguyên hàm từng phần ta thực hiện phép đổi biến \(t=e^x\).

Khi đó : \(I_2=\int t^2\cos tdt=t^2\sin t-2\int t\sin tdt\)

                 \(=t^2\sin t-2\left(-t\cos t+\int\cos tdt\right)\)

                 =\(\left(t^2-2\right)\sin t+2t\cos t+C\)

                 \(=\left(e^{2x}-2\right)\sin e^x+2e^x\cos e^x+C\)

 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
6 tháng 1 2018 lúc 14:28