\(b=\frac{2.4.6+4.6.8+...+198.200.202}{1.3.5+3.5.7+...+97.99.101}\)
A = \(\frac{2.4.6+4.6.8+...+198.200.202}{1.3.5+3.5.7+...+97.99.101}\)=?
Tính A = \(\frac{2.4.6+4.6.8+...+198.200.202}{1.3.5+3.5.7+...+97.99.101}\)
A = \(\frac{2.4.6+4.6.8+6.8.10+8.10.12+...+198.200.202}{1.3.5+3.5.7+5.7.9+7.9.11+...+97.99.101}\) =?
Bài này ai giải ra nhanh nhất mình sẽ tick cho nè:
Tính tổng:a)S=4/1.3.5+4/3.5.7+...+4/95.97.99
b) K=1/2.4.6+1/4.6.8+....+1/96.98.100
tôi mới lên lớp 5 thôi nên ko có biết !!!
sorry nha
1) tính :
a) 2/ 1.2.3 + 2/ 2.3.4 + ...+ 2/ 98.99.100
b) 4/ 2.4.6 + 4/ 4.6.8 + ...+ 4/ 50.52.54
c) 8/ 1.3.5 + 8/ 3.5.7 + ...+ 8/ 18.19.20
d) 1/ 1.2.3 + 1/ 2.3.4 + ... + 1/ 18.19.20
Thách ai là người giỏi nhất giải được bài toán này trong mười phút:
Tính tổng:K=1/2.4.6+1/4.6.8+...+1/96.98.100
S=4/1.3.5+4/3.5.7+...+4/95.97.99
tính nhanh
\(\frac{3}{2.6}+\frac{3}{6.10}+\frac{3}{10.14}\)
\(\frac{4}{1.3.5}+\frac{4}{3.5.7}+\frac{4}{5.7.9}\)
\(\frac{5}{2.4.6}+\frac{5}{4.6.8}+\frac{5}{6.8.10}\)
\(\dfrac{3}{2.6}\) + \(\dfrac{3}{6.10}\) + \(\dfrac{3}{10.14}\)
= \(\dfrac{3}{4}\).(\(\dfrac{4}{2.6}\) + \(\dfrac{4}{6.10}\) + \(\dfrac{4}{10.14}\))
= \(\dfrac{3}{4}\).(\(\dfrac{1}{2}-\dfrac{1}{6}\) + \(\dfrac{1}{6}\) - \(\dfrac{1}{10}\) + \(\dfrac{1}{10}\) - \(\dfrac{1}{14}\))
= \(\dfrac{3}{4}\).(\(\dfrac{1}{2}\) - \(\dfrac{1}{14}\))
= \(\dfrac{3}{4}\). \(\dfrac{3}{7}\)
= \(\dfrac{9}{28}\)
B = \(\dfrac{4}{1.3.5}\) + \(\dfrac{4}{3.5.7}\) + \(\dfrac{4}{5.7.9}\)
B = \(\dfrac{1}{1.3}\) - \(\dfrac{1}{3.5}\) + \(\dfrac{1}{3.5}\) - \(\dfrac{1}{5.7}\) + \(\dfrac{1}{5.7}\) - \(\dfrac{1}{7.9}\)
B = \(\dfrac{1}{1.3}\) - \(\dfrac{1}{7.9}\)
B = \(\dfrac{1}{3}\) - \(\dfrac{1}{63}\)
B = \(\dfrac{20}{63}\)
C = \(\dfrac{5}{2.4.6}\) + \(\dfrac{5}{4.6.8}\) + \(\dfrac{5}{6.8.10}\)
C = \(\dfrac{5}{4}\).(\(\dfrac{4}{2.4.6}\) + \(\dfrac{4}{4.6.8}\) + \(\dfrac{4}{6.8.10}\))
C = \(\dfrac{5}{4}\).(\(\dfrac{1}{2.4}\) - \(\dfrac{1}{4.6}\) + \(\dfrac{1}{4.6}\) - \(\dfrac{1}{6.8}\) + \(\dfrac{1}{6.8}\) - \(\dfrac{1}{8.10}\))
C = \(\dfrac{5}{4}\).(\(\dfrac{1}{2.4}\) - \(\dfrac{1}{8.10}\))
C = \(\dfrac{5}{4}\).( \(\dfrac{1}{8}\) - \(\dfrac{1}{80}\))
C = \(\dfrac{5}{4}\). \(\dfrac{9}{80}\)
C = \(\dfrac{9}{64}\)
Tính:
\(\frac{2.6.10+6.10.14+10.14.18+...+194.198.202}{1.3.5+3.5.7+5.7.9+...+97.99.101}\)
Rút gọn A=\(\frac{2.6.10+6.10.14+10.14.18+...+194.198.202}{1.3.5+3.5.7+5.7.9+...+97.99.101}\)
\(A=\dfrac{2.6.10+6.10.14+10.14.18+..+194.198.202}{1.3.5+3.5.7+5.7.9+..+97.99.101}\)
\(=\dfrac{2^3.1.3.5+2^3.3.5.7+2^3.5.7.9+...+2^3.97.99.101}{1.3.5+3.5.7+7.9.11+...+97.99.101}\)
\(=\dfrac{2^3.\left(1.3.5+3.5.7+7.9.11+...+97.99.101\right)}{1.3.5+3.5.7+5.7.9+...+97.99.101}=2^3=8\)