cho biểu thức: E=(8-x)/(x-7)+1/(7-x). tìm x để E=8
Cho biểu thức:
E = (\(\dfrac{1}{x+\sqrt{x}}\)+\(\dfrac{1}{\sqrt{x}+1}\)) : \(\dfrac{2}{\sqrt{x}-2}\)
a) Rút gọn E
b) Tính giá trị E khi x = 19 - \(8\sqrt{3}\)
c) tìm x để E = -1
d) Tìm x để E = \(\dfrac{1}{\sqrt{x}}\)
e) Tìm x để E > 0
f) So sánh E với \(\dfrac{1}{2}\)
g) Tìm x \(\in\) Z để \(\dfrac{1}{E}\)\(\in\) Z
h) Với x > 4. So sánh: E và \(\sqrt{E}\)
\(a,ĐK:x>0;x\ne4\\ E=\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}-2}{2}=\dfrac{\sqrt{x}-2}{2\sqrt{x}}\\ b,x=19-8\sqrt{3}=\left(4-\sqrt{3}\right)^2\\ \Leftrightarrow E=\dfrac{4-\sqrt{3}-2}{2\left(4-\sqrt{3}\right)}=\dfrac{\left(2-\sqrt{3}\right)\left(4+\sqrt{3}\right)}{26}=\dfrac{5-2\sqrt{3}}{26}\\ c,E=-1\Leftrightarrow\sqrt{x}-2=-2\sqrt{x}\\ \Leftrightarrow3\sqrt{x}=2\Leftrightarrow\sqrt{x}=\dfrac{2}{3}\Leftrightarrow x=\dfrac{4}{9}\left(tm\right)\\ d,E=\dfrac{1}{\sqrt{x}}\Leftrightarrow\dfrac{\sqrt{x}-2}{2}=1\Leftrightarrow\sqrt{x}=4\Leftrightarrow x=16\left(tm\right)\)
\(e,E>0\Leftrightarrow\sqrt{x}-2>0\left(2\sqrt{x}>0\right)\Leftrightarrow x>4\\ f,E=\dfrac{\sqrt{x}-2}{2\sqrt{x}}=\dfrac{1}{2}-\dfrac{1}{\sqrt{x}}< \dfrac{1}{2}\left(-\dfrac{1}{\sqrt{x}}< 0\right)\\ g,\dfrac{1}{E}=\dfrac{2\sqrt{x}}{\sqrt{x}-2}=\dfrac{2\left(\sqrt{x}-2\right)+4}{\sqrt{x}-2}\in Z\\ \Leftrightarrow\sqrt{x}-2\inƯ\left(4\right)=\left\{-1;0;1;2;4\right\}\left(\sqrt{x}-2>-2\right)\\ \Leftrightarrow\sqrt{x}\in\left\{1;2;3;4;6\right\}\\ \Leftrightarrow x\in\left\{1;9;16;36\right\}\left(x\ne4\right)\\ h,x>4\Leftrightarrow\sqrt{x}-2>0\\ \Leftrightarrow E=\dfrac{\sqrt{x}-2}{2\sqrt{x}}>0\Leftrightarrow E\ge\sqrt{E}\)
\(\)Cho biểu thức: E= ( x+2/x\(\sqrt{x}\)+1 -1/\(\sqrt{x}\)+1) * 4\(\sqrt{x}\)/3 (với x≥0)
a) rút gọn E?
b) tìm gá trị của x để E=8/9
Với \(x\ge0\)
\(E=\left(\dfrac{x+2}{x\sqrt{x}+1}-\dfrac{1}{\sqrt{x}+1}\right).\dfrac{4\sqrt{x}}{3}\)
\(=\left(\dfrac{x+2-x+\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(x+\sqrt{x}+1\right)}\right).\dfrac{4\sqrt{x}}{3}\)
\(=\dfrac{4\sqrt{x}}{3\left(x+\sqrt{x}+1\right)}\)
a) Ta có: \(E=\left(\dfrac{x+2}{x\sqrt{x}+1}-\dfrac{1}{\sqrt{x}+1}\right)\cdot\dfrac{4\sqrt{x}}{3}\)
\(=\dfrac{x+2-x+\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\cdot\dfrac{4\sqrt{x}}{3}\)
\(=\dfrac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\cdot\dfrac{4\sqrt{x}}{3}\)
\(=\dfrac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}\)
b) Để \(E=\dfrac{8}{9}\) thì \(\dfrac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}=\dfrac{8}{9}\)
\(\Leftrightarrow24\left(x-\sqrt{x}+1\right)=36\sqrt{x}\)
\(\Leftrightarrow24x-24\sqrt{x}-36\sqrt{x}+24=0\)
\(\Leftrightarrow24x-60\sqrt{x}+24=0\)
\(\Leftrightarrow24x-12\sqrt{x}-48\sqrt{x}+24=0\)
\(\Leftrightarrow12\sqrt{x}\left(2\sqrt{x}-1\right)-24\left(2\sqrt{x}-1\right)=0\)
\(\Leftrightarrow\left(2\sqrt{x}-1\right)\left(12\sqrt{x}-24\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2\sqrt{x}-1=0\\12\sqrt{x}-24=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2\sqrt{x}=1\\12\sqrt{x}=24\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{4}\\x=4\end{matrix}\right.\)
Tìm giá trị nhỏ nhất của biểu thức sau:A=2+3×√x^2+1 B=√x+8 -7 Tìm giá trị lớn nhất của biểu thức sau: E=3-√x+6 F= 4/3+√2-x
1:
a: \(A=2+3\sqrt{x^2+1}>=3\cdot1+2=5\)
Dấu = xảy ra khi x=0
b: \(B=\sqrt{x+8}-7>=-7\)
Dấu = xảy ra khi x=-8
Cho biến thức sau: Q = 2 x − x 2 2 x 2 + 8 − 2 x 2 x 3 − 2 x 2 + 4 x − 8 . 2 x 2 + 1 − x x .
a) Tìm điều kiện xác định của biểu thức Q;
b) Rút gọn biểu thức Q;
c) Tính giá trị của biểu thức Q khi x = 2017;
d) Tìm x để biểu thức Q > 1 2
e) Tìm x ∈ Z để giá trị biểu thức Q ∈ Z.
a) x ≠ 2 và x ≠ 0
b) Rút gọn được Q = x + 1 2 x
c) Thay x = 2017 (TMĐK) vào Q ta được Q = 1009 2017
Tìm giá trị lớn nhất của mỗi biểu thức sau:
a) E = 8 - 6 . /x - 7/
b) D = 1/2 . /x - 1/ + 3
\(E=8-6.\left|x-7\right|\)
Có: \(\left|x-7\right|\ge0\Rightarrow6.\left|x-7\right|\ge0\)
\(\Rightarrow8-6.\left|x-7\right|\le8\)
Dấu '=' xảy ra khi: \(x-7=0\Rightarrow x=7\)
Vậy: \(Max_E=8\) tại \(x=7\)
\(D=\frac{1}{2}.\left|x-1\right|+3\)
Có: \(\left|x-1\right|\ge0\Rightarrow\frac{1}{2}\left|x-1\right|\ge0\)
\(\Rightarrow\frac{1}{2}\left|x-1\right|+3\ge0\)
Vậy không tồn tại x để D đạt GTNN
Cho biểu thức E=\(\left(\dfrac{2x\sqrt{x}+x-\sqrt{x}}{x\sqrt{x}-1}-\dfrac{x+\sqrt{x}}{x-1}\right).\dfrac{x-1}{2x+\sqrt{x}-1}+\dfrac{\sqrt{x}}{2\sqrt{x}-1}\)
a)Rút gọn E
b)Tìm giá trị nhỏ nhất của E
c) Tìm x để E≥\(\dfrac{6}{7}\)
a) Điều kiện: \(x\ge0;x\ne1;x\ne\dfrac{1}{4}\)\(E=\left(\dfrac{2x\sqrt{x}+x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\dfrac{\sqrt[]{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right).\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}+\dfrac{\sqrt{x}}{2\sqrt{x}-1}\)
\(E=\left(\dfrac{2x\sqrt{x}+x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\dfrac{\sqrt{x}}{\sqrt{x}-1}\right).\dfrac{\sqrt{x}-1}{2\sqrt{x}-1}+\dfrac{\sqrt{x}}{2\sqrt{x}-1}\)
\(E=\dfrac{2x\sqrt{x}+x-\sqrt{x}-x\sqrt{x}-x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{\sqrt{x}-1}{2\sqrt{x}-1}+\dfrac{\sqrt{x}}{2\sqrt{x}-1}\)
\(E=\dfrac{x\sqrt{x}-2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{\sqrt{x}-1}{2\sqrt{x}-1}+\dfrac{\sqrt{x}}{2\sqrt{x}-1}\)
\(E=\dfrac{x\sqrt{x}-2\sqrt{x}}{\left(x+\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}+\dfrac{\sqrt{x}}{2\sqrt{x}-1}\)
\(E=\dfrac{x\sqrt{x}-2\sqrt{x}+x\sqrt{x}+x+\sqrt{x}}{\left(x+\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}\)
\(E=\dfrac{2x\sqrt{x}-\sqrt{x}+x}{\left(x+\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}\)
\(E=\dfrac{\sqrt{x}\left(2x+\sqrt{x}-1\right)}{\left(x+\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}\)
\(E=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}{\left(x+\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}\)
\(E=\dfrac{x+\sqrt{x}}{x+\sqrt{x}+1}\)
b)Vì \(x\ge0\) nên \(x+\sqrt{x}\ge0\) và \(x+\sqrt{x}+1>0\)
Do đó: \(E\ge0\). Dấu "=" xảy ra \(\Leftrightarrow x=0\)
c)\(E\ge\dfrac{6}{7}\Leftrightarrow\dfrac{x+\sqrt{x}}{x+\sqrt{x}+1}\ge\dfrac{6}{7}\Leftrightarrow7x+7\sqrt{x}\ge6x+6\sqrt{x}+6\)
\(\Leftrightarrow x+\sqrt{x}-6\ge0\Leftrightarrow x-2\sqrt{x}+3\sqrt{x}-6\ge0\)
\(\Leftrightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)\ge0\)
\(\Leftrightarrow\sqrt{x}-2\ge0\Leftrightarrow\sqrt{x}\ge2\Leftrightarrow x\ge4\)
Cho biểu thức A= 8/x (x e N ,x khac 0)
a) Tính giá trị của A khi x =-8;x =-2;x =1;x =2;x =4;x =3;x= 5;x=- 7 .
b) Từ câu a hãy rút ra nhận xét: Số nguyên x cần có điều kiện gì để A có giá trị là số nguyên? Vận dụng nhận xét trên làm bài tập sau: Bài tập: Tìm các số tự nhiên x để các phân số sau có giá trị là số nguyên B=- 6/x, C =5/x+ 1, D= 4/1 -x, E =x + 2/x, F =2x-3/x+ 2
1, a, Tìm giá trị nhỏ nhất của các biểu thức :
B = 2 . ( x + 1 )2 + 17
b, Tìm giá trị lớn nhất của các biểu thức :
C = 7 - 3n2
D = 8 - ( x + 2 )2
E = 10 - | x - 8 |
a, B=2.(x+1)2+17
Vì (x+1)2 >= 0 Với mọi x
<=> 2.(x+1)2 >= 0
<=> 2.(x+1)2 >= 0 +17
<=> 2.(x+1)2 >= 17
Vậy GTNN là 17
b, C ; D tương tự
E= 10 - | x - 8 |
Vì | x-8 | >= 0 Với mọi x
<=> 10 - | x-8 | =< 10-0
<=> 10 - | x-8 | =< 10
Vậy GTLN là 10
a,B= 2. ( x+1)2 +17 >=17 với mọi x
Dấu bằng xảy ra khi ( x+1)2=0
=> x +1 =0
=> x= -1
Vậy B đạt GTNN bằng 17 <=> x=-1
b, C= 7 - 3n2 <= 7
Dấu = xảy ra khi 3n2= 0
=> n = 0
Vậy C đạt GTLN = 7 <=> n=0
(x+2/x+1 + 2x/1-x) : x/3x+3 + 4x^2 +x +7/x^2-x
a, tìm điều kiên xác dịnh (tìm x để biểu thức có nghĩa )
b,rút gon M
c, tìm x để M = 0
d. tìm x để M = 1/2
e. tìm giá trị của biểu thức M khi x = -2
g. tìm giá trị nguyên của x để m nhận giá trị nguyên
(giúp mình cái mình gần thi học kì ) cảm ơn (toán lớp 8 nhé)