Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
8.nguyễn minh huy
Xem chi tiết
Phuong Tran
Xem chi tiết
Phuong Tran
7 tháng 3 2022 lúc 8:28

help me

ILoveMath
7 tháng 3 2022 lúc 10:05

a, False

b, True

c, False

d, True

Khoa Lê
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
16 tháng 2 2018 lúc 16:05

Chọn đáp án D

Thảo Vũ
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 12 2020 lúc 21:42

Ta có: a+b+c=0

nên a+b=-c

Ta có: \(a^2-b^2-c^2\)

\(=a^2-\left(b^2+c^2\right)\)

\(=a^2-\left[\left(b+c\right)^2-2bc\right]\)

\(=a^2-\left(b+c\right)^2+2bc\)

\(=\left(a-b-c\right)\left(a+b+c\right)+2bc\)

\(=2bc\)

Ta có: \(b^2-c^2-a^2\)

\(=b^2-\left(c^2+a^2\right)\)

\(=b^2-\left[\left(c+a\right)^2-2ca\right]\)

\(=b^2-\left(c+a\right)^2+2ca\)

\(=\left(b-c-a\right)\left(b+c+a\right)+2ca\)

\(=2ac\)

Ta có: \(c^2-a^2-b^2\)

\(=c^2-\left(a^2+b^2\right)\)

\(=c^2-\left[\left(a+b\right)^2-2ab\right]\)

\(=c^2-\left(a+b\right)^2+2ab\)

\(=\left(c-a-b\right)\left(c+a+b\right)+2ab\)

\(=2ab\)

Ta có: \(M=\dfrac{a^2}{a^2-b^2-c^2}+\dfrac{b^2}{b^2-c^2-a^2}+\dfrac{c^2}{c^2-a^2-b^2}\)

\(=\dfrac{a^2}{2bc}+\dfrac{b^2}{2ac}+\dfrac{c^2}{2ab}\)

\(=\dfrac{a^3+b^3+c^3}{2abc}\)

Ta có: \(a^3+b^3+c^3\)

\(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)\)

\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ca-cb+c^2\right)-3ab\left(a+b\right)\)

\(=-3ab\left(a+b\right)\)

Thay \(a^3+b^3+c^3=-3ab\left(a+b\right)\) vào biểu thức \(=\dfrac{a^3+b^3+c^3}{2abc}\), ta được: 

\(M=\dfrac{-3ab\left(a+b\right)}{2abc}=\dfrac{-3\left(a+b\right)}{2c}\)

\(=\dfrac{-3\cdot\left(-c\right)}{2c}=\dfrac{3c}{2c}=\dfrac{3}{2}\)

Vậy: \(M=\dfrac{3}{2}\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
23 tháng 2 2018 lúc 5:10

Bảo Khanh Đàm
Xem chi tiết
chuột nhà
Xem chi tiết
I don
13 tháng 6 2020 lúc 20:37

Bài 2:

Ta có: M = a2+ab+b2 -3a-3b-3a-3b +2001

=> 2M = ( a2 + 2ab + b2) -4.(a+b) +4 + (a2 -2a+1)+(b2 -2b+1) + 3996

2M= ( a+b-2)2 + (a-1)2 +(b-1)+ 3996

=> MinM = 1998 tại a=b=1

Khách vãng lai đã xóa
I don
13 tháng 6 2020 lúc 20:44

Câu 3: 

Ta có: P= x2 +xy+y2 -3.(x+y) + 3

=> 2P = ( x2 + 2xy +y2) -4.(x+y) + 4 + (x2 -2x+1) +(y2 -2y+1)

2P = ( x+y-2)2 +(x-1)2+(y-1)2

=> Min= 0 tại x=y=1

Khách vãng lai đã xóa
I don
13 tháng 6 2020 lúc 19:42

Bài1:

Ta có: a2+ b2+c2+d2= a.(b+c+d)

=> a2+b2+c2+d2 -ab -ac -ad =0

=> 4a2+ 4b2+4c2+4d2-4ab -4ac -4ad=0

=> ( a2 - 4ab +4b2) + ( a2- 4ac + 4c2) +( a2 -4ad+ 4d2) + a2=0

=> ( a-2b)2 + ( a-2c)2 + (a-2d)2 + a2 =0

=> ....

KL: a=b=c=d=0

Khách vãng lai đã xóa
Quang Trần Minh
Xem chi tiết
Nguyễn Linh Chi
27 tháng 3 2020 lúc 11:13

Câu hỏi của Hattory Heiji - Toán lớp 8 - Học toán với OnlineMath

Khách vãng lai đã xóa
Phạm Nhật Quân
17 tháng 4 2020 lúc 8:51

tvbobnokb' n

iai

  ni;bv nn0

Khách vãng lai đã xóa