Cho tam giác ABC có đường trung tuyến AM=1/2 BC. Chứng minh rằng tam giác ABC vuông
Bài 1: Cho tam giác ABC cân tại A có các đường trung tuyến BE và CD . Chứng minh rằng BE bằng CD
Bài 2: Cho tam giác ABC có đường trung tuyến BE và CD, biết BE = CD . Chứng minh rằng tam giác ABC cân tại A
Bài 3: Cho tam giác ABC chứng minh rằng a) Nếu tam giác ABC vuông góc tại A , có trung tuyến AM =1/2 BC
b) Nếu trung tuyến AM =1/2 BC thì tam giác ABC vuông góc tại A
Cho tam giác ABC có đường trung tuyến AM= 1/2 BC. Chứng mik rằng tam giác ABC vuông.
1) tam giác ABC có các đường trung tuyến BD và CE bằng nhau . chứng minh rằng tam giác ABC là tam giác cân.
2)cho tam giác ABC cân ở A , AB=34cm , BC =32cm , và 3 trung tuyến AM , BN , CP đồng quy tại trọng tâm G
a) chúng minh AM vuông góc với
b) tính độ dài AM , BN ,CP (làm trong kết quả đến chữ số thập phân thứ 2)
câu 2 :
a) có phải là chứng minh AM ⊥ BC không
xét ΔAMB và ΔAMC, ta có :
AB = AC (2 cạnh bên của ΔABC cân tại A)
MB = MC (AM là đường trung tuyến của cạnh BC)
AM là cạnh chung
=> ΔAMB = ΔAMC (c.c.c)
=> \(\widehat{AMB}=\widehat{AMC}\) (2 cạnh tương ứng)
mà \(\widehat{AMB}+\widehat{AMC}=180^O\) (kề bù)
\(\Rightarrow\widehat{AMB}=\widehat{AMC}=\dfrac{180^O}{2}=90^O\)
=> AM ⊥ BC
Chứng minh rằng: Nếu tam giác ABC có đường trung tuyến AM bằng nửa cạnh BC thì tam giác đo vuông tại A.
Vì AM là đường trung tuyến của ΔABC nên BM = MC = 1/2 BC
Mà AM = 1/2 BC (gt) nên: AM = BM = MC.
Tam giác AMB có AM = MB nên ΔAMB cân tại M
Suy ra: ∠B = ∠A1 (tính chất tam giác cân) (1)
Tam giác AMC có AM = MC nên ΔAMC cân tại M
Suy ra: ∠C = ∠A2 (tính chất tam giác cân) (2)
Từ (1) và (2) suy ra: ∠B + ∠C = ∠A1 + ∠A2 = ∠(BAC) (3)
Trong ΔABC ta có:
∠B + ∠C + ∠(BAC) = 180o (tổng ba góc trong tam giác) (4)
Từ (3) và (4) suy ra: ∠(BAC) + ∠(BAC) = 180o ⇔ 2∠(BAC) = 180o
Hay ∠(BAC) = 90o.
Vậy ΔABC vuông tại A.
Bài 1 :
Cho tam giác ABC có đường trung tuyến AM = ½ BC. Chứng minh rằng tam giác ABC vuông.
Bài 2 :
Cho tam giác ABC có AB = AC. Vẽ đường phân giác AI. Chứng minh rằng :
AI vuông góc BC.BI = CI và góc ABC = ACB.Bài 3 :
Cho tam giác ABC có đường trung tuyến AM. Vẽ hai đường cao của tam giác BH và CK lần lượt là đường cao của tam giác ABM và ACM. Chứng minh rằng BH = CK.
Bài 4 :
Cho tam giác ABC có đường trung tuyến CI. Trên tia đối CI lấy điểm D sao cho ID = IC.
Chứng minh AD = BC.Lấy E thuộc AD và F thuộc BC sao cho AE = BF. Chứng minh rằng I là trung điểm của EF.1) Cho tam giác ABC vuông tại A, đường trung tuyến AM. Trên tia đối của tia MA lấy điểm D sao cho MD=MA.
a)Tính số đo góc ABD?
b)Chứng minh : Tam giác ABC = Tam giác BAD.
c) So sánh AM và BC.
2) Cho tam giác ABC có đường trung tuyến AM bằng nửa cạnh BC. CMR: góc BAC = 90 độ.
Cho tam giác ABC vuông tại A có đường trung tuyến AM = AB .
Chứng minh rằng : SinC = 1/2
ΔABC vuông tại A có AM là trung tuyến
nên MA=MB
mà MA=AB
nên MA=AB=MB
=>ΔMAB đều
=>góc B=60 độ
=>góc C=90-60=30 độ
sin C=sin 30=1/2
Cho tam giác ABC có AB=AC=10cm; BC=16cm. Trung tuyến AM. Chứng Minh rằng : A) Tam giác ABM= Tam giác AC B) AM vuông góc BC C) Tính độ dài AM
a: Xét ΔABM và ΔACM có
AB=AC
AM chung
BM=CM
Do đó: ΔABM=ΔACM
b: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
c: BM=CM=BC/2=8(cm)
nên AM=6(cm)
tham khảo
a: Xét ΔABM và ΔACM có
AB=AC
AM chung
BM=CM
Do đó: ΔABM=ΔACM
b: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
c: BM=CM=BC/2=8(cm)
nên AM=6(cm)
a, Ta có :
AB = AC (gt)
=> Δ ABC cân tại A
Xét Δ ABM và Δ ACM, có :
AB = AC (gt)
MB = MC (M là trung điểm BC)
\(\widehat{ABM}=\widehat{ACM}\) (Δ ABC cân tại A)
=> Δ ABM = Δ ACM
b, Ta có :
AM là đường trung tuyến
Δ ABC cân tại A
=> AM ⊥ BC
c, Ta có :
BC = 2MB
=> 16 = 2MB
=> MB = 8 (cm)
Xét Δ AMB vuông tại M, có :
\(AB^2=AM^2+BM^2\)
=> \(10^2=AM^2+8^2\)
=> \(AM^2=36\)
=> AM = 6 (cm)
cho tam giác ABC có đường cao AH, trung tuyến AM, có góc BAH bằng goc CAM chứng minh rằng tam giác ABC vuông