Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Khánh Linh Bùi
Xem chi tiết
STY
Xem chi tiết
Kira
Xem chi tiết
subjects
4 tháng 3 2023 lúc 18:11

câu 2 : 

a) có phải là chứng minh AM ⊥ BC không

xét ΔAMB và ΔAMC, ta có : 

AB = AC (2 cạnh bên của ΔABC cân tại A)

MB = MC (AM là đường trung tuyến của cạnh BC)

AM là cạnh chung

=> ΔAMB = ΔAMC (c.c.c)

=> \(\widehat{AMB}=\widehat{AMC}\) (2 cạnh tương ứng)

mà \(\widehat{AMB}+\widehat{AMC}=180^O\) (kề bù)

\(\Rightarrow\widehat{AMB}=\widehat{AMC}=\dfrac{180^O}{2}=90^O\)

=> AM ⊥ BC

subjects
4 tháng 3 2023 lúc 18:17

loading...

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
25 tháng 10 2017 lúc 14:47

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

Vì AM là đường trung tuyến của ΔABC nên BM = MC = 1/2 BC

Mà AM = 1/2 BC (gt) nên: AM = BM = MC.

Tam giác AMB có AM = MB nên ΔAMB cân tại M

Suy ra: ∠B = ∠A1 (tính chất tam giác cân) (1)

Tam giác AMC có AM = MC nên ΔAMC cân tại M

Suy ra: ∠C = ∠A2 (tính chất tam giác cân) (2)

Từ (1) và (2) suy ra: ∠B + ∠C = ∠A1 + ∠A2 = ∠(BAC) (3)

Trong ΔABC ta có:

∠B + ∠C + ∠(BAC) = 180o (tổng ba góc trong tam giác) (4)

Từ (3) và (4) suy ra: ∠(BAC) + ∠(BAC) = 180o ⇔ 2∠(BAC) = 180o

Hay ∠(BAC) = 90o.

Vậy ΔABC vuông tại A.

Lê Hà Phương
Xem chi tiết
Susunguyễn
Xem chi tiết
mai anh phạm
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 7 2023 lúc 14:36

ΔABC vuông tại A có AM là trung tuyến

nên MA=MB

mà MA=AB

nên MA=AB=MB

=>ΔMAB đều

=>góc B=60 độ

=>góc C=90-60=30 độ

sin C=sin 30=1/2

Phù Hân
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 5 2022 lúc 21:30

a: Xét ΔABM và ΔACM có

AB=AC
AM chung

BM=CM

Do đó: ΔABM=ΔACM

b: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường cao

c: BM=CM=BC/2=8(cm)

nên AM=6(cm)

Minh
13 tháng 5 2022 lúc 21:32

tham khảo

a: Xét ΔABM và ΔACM có

AB=AC
AM chung

BM=CM

Do đó: ΔABM=ΔACM

b: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường cao

c: BM=CM=BC/2=8(cm)

nên AM=6(cm)

pourquoi:)
13 tháng 5 2022 lúc 21:37

a, Ta có :

AB = AC (gt)

=> Δ ABC cân tại A

Xét Δ ABM và Δ ACM, có :

AB = AC (gt)

MB = MC (M là trung điểm BC)

\(\widehat{ABM}=\widehat{ACM}\) (Δ ABC cân tại A)

=> Δ ABM = Δ ACM

b, Ta có :

AM là đường trung tuyến

Δ ABC cân tại A

=> AM ⊥ BC

c, Ta có :

BC = 2MB

=> 16 = 2MB

=> MB = 8 (cm)

Xét Δ AMB vuông tại M, có :

\(AB^2=AM^2+BM^2\)

=> \(10^2=AM^2+8^2\)

=> \(AM^2=36\)

=> AM = 6 (cm)

nguyễn Thị Ánh
Xem chi tiết