Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Ngọc Ánh
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 2 2021 lúc 1:24

Kẻ \(BK\perp AC\Rightarrow BK\perp\left(SAC\right)\)

\(\Rightarrow BK=d\left(B;\left(SAC\right)\right)\)

\(\dfrac{1}{BK^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\Rightarrow BK=\dfrac{AB.AC}{\sqrt{AB^2+AC^2}}=\dfrac{a\sqrt{3}}{2}\)

Kẻ \(CP\perp BH\Rightarrow CP\perp\left(SBH\right)\)

\(\Rightarrow CP=d\left(C;\left(SBH\right)\right)\)

\(\widehat{CBP}=\widehat{ACB}=30^0\Rightarrow CH=BC.sin30^0=\dfrac{a\sqrt{3}}{2}\)

\(BH=\dfrac{AC}{2}=\dfrac{1}{2}\sqrt{AB^2+AC^2}=a\)\(\Rightarrow SH=\sqrt{SB^2-BH^2}=a\)

Kẻ \(HE\perp BC\) , kẻ \(HF\perp SE\Rightarrow HF=d\left(H;\left(SBC\right)\right)\)

\(HE=CH.sin30^0=\dfrac{a}{2}\) 

\(\dfrac{1}{HF^2}=\dfrac{1}{SH^2}+\dfrac{1}{HE^2}\Rightarrow HF=\dfrac{SH.HE}{\sqrt{SH^2+HE^2}}=\dfrac{a\sqrt{5}}{5}\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
3 tháng 7 2017 lúc 16:50

Đáp án C.

Hướng dẫn giải: Gọi H là trung điểm AC.

Do tam giác ABC vuông tại B nên H là tâm đường tròn ngoại tiếp tam giác ABC.

Đỉnh S cách đều các điểm A, B,C nên hình chiếu của S trên mặt đáy (ABC) trùng với tâm đường tròn ngoại tiếp tam giác ABC

suy ra S H ⊥ ( A B C )

Tam giác vuông  SBH, có

 

Tam giác vuông  ABC ,

có  A B = A C 2 - B C 2 = a 3

Diện tích tam giác vuông

S ∆ A B C = 1 2 B A . B C = a 3 2 2

Vậy  V S . A B C = 1 3 S ∆ A B C . S H = a 3 2

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
3 tháng 10 2017 lúc 7:35

Chọn D

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
9 tháng 4 2017 lúc 5:14

Đáp án đúng : C

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
14 tháng 8 2019 lúc 13:56

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
10 tháng 7 2019 lúc 7:42

Chọn đáp án B

Gọi là H hình chiếu của đỉnh S xuống mặt phẳng (ABC). Khi đó, ta có

 

Ta có

Tương tự, ta cũng chứng minh được

Từ đó suy ra 

Do SH ⊥ AB, BH ⊥ AB nên suy ra góc giữa (SAB) (ABC) là góc SBH. Vậy SBH =  60 0

Trong tam giác vuông ABH, ta có

Trong tam giác vuông SHB, ta có

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
18 tháng 6 2018 lúc 13:44

Đáp án C

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
5 tháng 11 2017 lúc 3:44

Đáp án C

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
27 tháng 4 2017 lúc 2:13

Đáp án C

Hướng dẫn giải:

Gọi H, K lần lượt là trung điểm của BC và SA.

Dựng đường thẳng d đi qua H và vuông góc với (ABC). Khi đó d//SA.

Trong mặt phẳng (SAH) dựng đường thằng d 1  đi qua K và vuông góc với SA.

Khi đó,  d 1 //AH.

Gọi I = d ∩ d 1  tại. Ta có được IA = IB = IC = IS.

Khi đó mặt cầu cần tìm ở đề bài đi qua các điểm A, B, C, S có tâm là I và bán kính là R = IA.

Dễ thấy A H = 1 2 B C = b 2 + c 2 2

và I H = 1 2 S A = a 2 .

Trong ∆ I A H

Vậy là ta hoàn thành xong bài toán.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
9 tháng 10 2019 lúc 14:41

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) BC ⊥ SA & BC ⊥ AB) ⇒ BC ⊥ (SAB)

⇒ BC ⊥ SB.

⇒ tam giác SBC vuông tại B.

b) BH ⊥ AC & BH ⊥ SA ⇒ BC ⊥ (SAC)

⇒ (SBH) ⊥ (SAC).

c) d[B, (SAC)] = BH. Ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11