Cho hàm số f x xác định trên ℝ \ − 1 ; 1 và thỏa mãn:
f ' x = 1 x 2 − 1 ; f − 3 + f 3 = 0 và f − 1 2 + f 1 2 = 2 . Tính giá trị của biểu thức P = f 0 + f 4 .
A. P = ln 3 5 + 2
B. P = 1 + ln 3 5
C. P = 1 + 1 2 ln 3 5
D. P = 1 2 ln 3 5
Cho hàm số y = f(x) xác định trên ℝ , thỏa mãn f x > 0 , ∀ x ∈ ℝ và f’(x) + 2f(x) = 0. Tính f(-1), biết rằng f(1) = 1.
A. e - 2
B. e 3
C. e 4
D. 3
Chọn C.
Ta có f ' x + 2 f x = 0 ⇔ f ' x = - 2 f x ⇔ f ' x f x = - 2 d o f x > 0
Lấy tích phân hai vế, ta được
Cho hàm số f x = 2 x − 1 x + 1 xác định trên ℝ \ 1 . Đạo hàm của hàm số f(x) là:
A. f ' x = 1 x + 1 2
B. f ' x = 2 x + 1 2
C. f ' x = − 1 x + 1 2
D. f ' x = 3 x + 1 2
Đáp án D
f x = 2 x − 1 x + 1 f ' x = 2.1 − − 1 .1 x + 1 2 = 3 x + 1 2
Cho hàm số y = f(x) xác định trên ℝ và có đạo hàm f '(x) thỏa mãn f ' x = 1 - x x + 2 . g x + 2018 trong đó g x < 0 , ∀ x ∈ ℝ . Hàm số y = f 1 - x + 2018 x + 2019 nghịch biến trên khoảng nào?
A. 1 ; + ∞
B. 0 ; 3
C. - ∞ ; 3
D. 3 ; + ∞
Đáp án D
Ta có y ' = f 1 - x + 2018 x + 2019 ' = 1 - x ' . f ' 1 - x + 2018 = - f ' 1 - x + 2018
= - x 3 - x . g 1 - x - 2018 + 2018 = - x 3 - x . g 1 - x mà g 1 - x < 0 ; ∀ x ∈ ℝ
Nên y ' < 0 ⇔ - x 3 - x . g 1 - x < 0 ⇔ x 3 - x . g 1 - x > 0 ⇔ x 3 - x < 0 ⇔ [ x > 3 x < 0
Khi đó, hàm số y = f 1 - x + 2018 x + 2019 nghịch biến trên khoảng 3 ; + ∞
Cho hàm số y=f(x) xác định trên ℝ \ 1 , liên tục trên mỗi khoảng xác định và có bảng biến thiên như hình vẽ
Hàm số y = f ( x ) có bao nhiêu điểm cực trị?
A. 4.
B. 3.
C. 2.
D. 5.
Đáp án A
Từ bảng biến thiên của hàm số y=f(x), suy ra bảng biến thiên của hàm số y = f ( x ) là
Dựa vào bảng biến thiên, ta suy ra hàm số có 4 điểm cực trị.
Cho hàm số f(x) xác định trên ℝ \ 0 , thỏa mãn f ' x = 1 x 3 + x 5 , f 1 = a và f(-2) = b. Tính f - 1 + f 2
A.f(-1) + f(2) = -a - b
B. f(-1) + f(2) = a - b
C. f(-1) + f(2) = a + b
D. f(-1) + f(2) = b - a
Cho hàm số y = f (x) xác định và liên tục trên ℝ , thỏa mãn f x 5 + 4 x + 3 = 2 x + 1 với mọi x ∈ ℝ . Tích phân ∫ - 2 8 f x d x bằng:
A. 10.
B. 2.
C. 32 3
D. 72
Đáp án A
Ta có:
⇒ f x 5 + 4 x + 3 = 2 x + 1 ⇒ ∫ - 1 1 5 x 4 + 4 . f x 5 + 4 x + 3 d x = ∫ - 1 1 5 x 4 + 4 . ( 2 x + 1 ) d x ⇔ ∫ - 2 8 f ( t ) d t = ∫ - 1 1 ( 10 x 5 + 5 x 4 + 8 x + 4 ) d x
Cho hàm số y = f ( x ) xác định trên ℝ \ { - 1 } liên tục trên mỗi khoảng xác định và có bảng biến thiên như sau :
Khẳng định nào dưới đây sai ?
A. Hàm số đồng biến trên khoảng ( - ∞ ; 1 )
B. Giá trị lớn nhất của hàm sốy=f(x) trên khoảng ( - 1 ; + ∞ ) bằng 3.
C. Hàm số đạt cực đại tại x=1
D. Đồ thị hàm số y=f(x) có 3 đường tiệm cận.
Đáp án A
Vì hàm số không xác định tại x=-1 nên hàm số đồng biến trên ( - ∞ ; - 1 ) ; ( - 1 ; 1 ) .
Cho hàm số y=f(x) xác định trên ℝ và có đồ thị của hàm số f’(x) và các khẳng định sau:
(1). Hàm số y=f(x) đồng biến trên khoảng 1 ; + ∞
(2). Hàm số y=f(x) nghịch biến trên khoảng - ∞ ; - 2
(3). Hàm số y=f(x) nghịch biến trên khoảng - 2 ; 1 .
(4). Hàm số y = f x 2 đồng biến trên khoảng - 1 ; 0
(5). Hàm số y = f x 2 nghịch biến trên khoảng (1;2)
Số khẳng định đúng là
A. 4
B. 3
C. 2
D. 5
Cho hàm số y = f ( x ) xác định và liên tục trên ℝ . Đồ thị của hàm số f ( x ) như hình bên. Gọi m là số nghiệm thực của phương trình f ( f ( x ) ) = 1 . Khẳng định nào sau đây là đúng?
A. m = 5
B. m = 6
C. m = 7
D. m = 9
Cho hàm số y = f ( x ) xác định và liên tục trên ℝ . Đồ thị của hàm số f(x) như hình bên. Gọi m là số nghiệm thực của phương trình f(f(x))=1. Khẳng định nào sau đây là đúng?
A. m=5
B. m=6
C. m=7
D. m=9