Xét dấu biểu thức: f x = - 4 3 x + 1 - 3 2 - x
Xét dấu biểu thức sau: f(x) = (-2x + 3)(x - 2)(x + 4)
Xét dấu các biểu thức: a) f(x)=( 4 - x ) × ( 5x - 10 ) b) f(x)=x × (1/3 × x - 1)
Xét dấu biểu thức: f(x) = (-3x - 3)(x + 2)(x + 3)
Nhị thức –3x – 3 có nghiệm là –1; nhị thức x + 2 có nghiệm là –2 ; nhị thức x + 3 có nghiệm là –3.
Ta có bảng xét dấu :
Kết luận :
+ f(x) < 0 khi –3 < x < –2 hoặc x > –1
+ f(x) > 0 khi x < –3 hoặc –2 < x < –1.
+ f(x) = 0 khi x = –3 hoặc x = –2 hoặc x = –1.
Xét f(x) = (1+x)(x-2)2(4-x)
f(x) = 0 \(\Leftrightarrow\) x = -1 hoặc x = 2 hoặc x = 4
ta có bảng
x \(-\infty\) -1 2 4 \(+\infty\)
1+x - 0 + | + | +
(x-2)2 + | + 0 + | +
4-x + | + | + 0 -
f(x) - 0 + 0 + 0 -
Chúc bn học tốt
Xét dấu biểu thức f(x) = (2x – 1)(-x + 3)
Các nghiệm này chia khoảng thành ba khoảng, trong mỗi khoảng các nhị thức đã cho có dấu hoàn toàn xác định.
Từ bảng xét dấu ta thấy:
Trả lời câu hỏi Toán 10 Đại số Bài 3 trang 92: Giải bất phương trình x3 – 4x < 0.
Lời giải
x3 – 4x < 0 ⇔ x(x2 - 4) < 0 ⇔ x(x - 2)(x + 2) < 0
Ta có bảng xét dấu
Từ bảng xét dấu ta có tập nghiệm của bất phương trình là:
S = (-∞;2) ∪ (0;2)
Xét dấu biểu thức: f(x) = (2x - 1)(x + 3)
Nhị thức 2x – 1 có nghiệm là 1/2 ; nhị thức x + 3 có nghiệm là –3.
Ta có bảng xét dấu
Kết luận :
+ f(x) > 0 khi x < –3 hoặc x > 1/2
+ f(x) < 0 khi –3 < x < 1/2
+ f(x) = 0 khi x = –3 hoặc x = 1/2.
xét dấu các biểu thức sau:
a) f(x) =(2x-4)(3x+5)
Với \(x>2\) thì f(x) > 0.
Với \(x<\frac{-3}{5}\) thì f(x) > 0.
Với \(\frac{-3}{5}< x<2\) thì f(x) < 0.
Với x = 2 thì f(x) = 0.
Với \(x=\frac{-3}{5}\) thì f(x) = 0.
Xét các dấu biểu thức : a) f(x) = (3-x)(x+2) b) f(x) = (x-1)(x^2-6x-7) c) f(x) = -3x^2 + x + 2
f(x)=(3x+1)/(x+1)-(4)/(x^(2)-2x+1)
Xét dấu biểu thức ạ ai giúp mình với