Tìm nghiệm của phương trình 5 2018 x = 5 2018 .
A. x = 1 2
B. x = 1 − log 5 2
C. x = 2
D. x = − log 5 2
Nhờ thầy cô giải giúp em bài này :Tìm nghiệm nguyên dương của phương trình: x^5+y^5+2016=(x+2017)^5+(y-2018)^5
Số nghiệm nghiệm nguyên nhỏ hơn 2018 của bất phương trình: ( x + 1 ) log 1 2 2 x + ( 2 x + 5 ) log 1 2 x + 6 ≥ 0 là:
A. 2016.
B. 2017.
C. 2018.
D. Vô số.
Đáp án A.
+ Điều kiện: x > 0
Bất phương trình
=> Bất phương trình x ≤ 2 3 x + 1 ⇔ f ( x ) ≤ 0 ⇔ 0 < x ≤ 2 ( 2 ) .
Từ (1) và (2) => Tập nghiệm của bất phương trình là
S = ( 0 ; 2 ] ∪ [ 4 ; + ∞ ) .
Vậy có 2016 nghiệm nguyên thỏa mãn.
Số nghiệm nghiệm nguyên nhỏ hơn 2018 của bất phương trình: ( x + 1 ) log 1 2 2 x + ( 2 x + 5 ) log 1 2 x + 6 ≥ 0 là
A. 2016
B. 2017
C. 2018
D. Vô số
Số nghiệm nghiệm nguyên nhỏ hơn 2018 của bất phương trình: ( x + 1 ) log 1 2 2 x + ( 2 x + 5 ) log 1 2 x + 6 ≥ 0 là:
A. 2016
B. 2017
C. 2018
D. Vô số
Đáp án A.
+ Điều kiện: x > 0
+ Đặt log 1 2 x = t . Bất phương trình ⇔ x + 1 t 2 + 2 x + 5 t + 6 ≥ 0
Δ = 2 x + 5 2 − 4 x + 1 + 6 = 2 x − 1 2
Bất phương trình
⇔ log 1 2 x ≤ − 2 log 1 2 x ≥ − 3 x + 1 ⇔ x ≥ 1 2 − 2 0 < c ≤ 1 2 − 3 x + 1 ⇔ x ≥ 4 (1) 0 < x ≤ 2 3 x + 1
+ Xét hàm số f x = x − 2 3 x + 1 có f ' x = 1 − 2 3 x + 1 . ln 2. − 3 x + 1 2 > 0 ∀ x > 0
Hàm số đồng biến trên 0 ; + ∞
+ Có f 2 = 0 ⇒ f x = 0 coa nghiệm là x=2
Bảng biến thiên:
Bất phương trình x ≤ 2 3 x + 1 ⇔ f x ≤ 0 ⇔ 0 < x ≤ 2 ( 2 )
Từ (1) và (2) => Tập nghiệm của bất phương trình là S = 0 ; 2 ∪ 4 ; + ∞
Vậy có 2016 nghiệm nguyên thỏa mãn.
Tìm các ước nguyên tố của nghiệm phương trình:
\(\frac{x-5}{2020}+\frac{x-6}{2019}-\frac{x-7}{2018}-\frac{x-8}{2017}=0\)
\(PT\Leftrightarrow\left(\frac{x-5}{2020}-1\right)+\left(\frac{x-6}{2019}-1\right)-\left(\frac{x-7}{2018}-1\right)-\left(\frac{x-8}{2017}-1\right)=0\)
\(\Leftrightarrow\left(x-2025\right)\left(\frac{1}{2020}+\frac{1}{2019}-\frac{1}{2018}-\frac{1}{2017}\right)=0\)
Dễ thấy \(\left(\frac{1}{2020}+\frac{1}{2019}-\frac{1}{2018}-\frac{1}{2017}\right)< 0\)
\(\Rightarrow x=2025=5^2.3^4\)
Vậy các ước nguyên tố của nghieemh pt là 3,5
n là số tự nhiên thỏa mãn phương trình 3 x − 3 − x = 2 cos n x có 2018 nghiệm. Tìm số nghiệm của phương trình: 9 x + 9 − x = 4 + 2 c os 2 n x
A. 4036
B. 4035
C. 2019
D. 2018
Đáp án A
Ta có 9 x + 9 − x − 2 = 2 1 + c os2nx ⇔ 3 x − 3 − x 2 = 4 c os 2 n x ⇔ 3 x − 3 − x = 2 cos n x a 3 x − 3 − x = − 2 cos n x b
Nhận xét x1 là nghiệm của P T a ⇒ − x 1 là nghiệm PT(b)
Giả sử 2PT a ; b có chung nghiệm x0 khi đó 3 x 0 − 3 − x 0 = 2 cos n x 0 3 − x 0 − 3 x 0 = 2 cos n x 0
⇔ 3 x 0 − 3 − x 0 = 2 cos n x 0 3 − x 0 − 3 x 0 = − 2 cos n x 0 ⇒ 3 x 0 = 3 − x 0 ⇒ x 0 = 0 thay vào PT a 3 0 − 3 0 = − 2 c os 0 ⇒ 0 = 1 vô lý
PT (a); (b) không có nghiệm chung. PT có 2.2018 = 4036 nghiệm.
Dựa vào đồ thị của hàm số y=sinx hãy tìm số nghiệm của phương trình: sinx=1/2018 trên đoạn \(\left[-\dfrac{5\pi}{2};\dfrac{5\pi}{2}\right]\)
\(0< \dfrac{1}{2018}< 1\)
Kẻ 1 đường thẳng nằm ngang nằm giữa \(y=0\) và \(y=1\) ta thấy cắt đồ thị tại 5 điểm trên đoạn đã cho
\(\Rightarrow\) Pt có 5 nghiệm
Cho phương trình \(x^2-\left(n-2\right)x-3\) ( n là tham số). Chứng minh phương trình luôn có hai nghiệm \(x_1;x_2\) với mọi n. Tìm n để các nghiệm thoả mãn hệ thức:
\(\sqrt{x^2_1+2018}-x_1=\sqrt{x^2_2+2018}+x_2\)
\(\Delta=\left(n-2\right)^2+12>0\) ; \(\forall n\Rightarrow\) pt đã cho luôn có 2 nghiệm pb trái dấu với mọi n
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=n-2\\x_1x_2=-3\end{matrix}\right.\)
\(\sqrt{x_1^2+2018}-x_2=\sqrt{x_2^2+2018}+x_1\)
\(\Rightarrow x_1^2+x_2^2-2x_2\sqrt{x_1^2+2018}=x_1^2+x_2^2+2018+2x_1\sqrt{x_2^2+2018}\)
\(\Rightarrow-x_2\sqrt{x_1^2+2018}=x_1\sqrt{x_2^2+2018}\)
\(\Rightarrow x_2^2\left(x_1^2+2018\right)=x_1^2\left(x_2^2+2018\right)\)
\(\Rightarrow x_1^2=x_2^2\Rightarrow x_1=-x_2\) (do \(x_1;x_2\) trái dấu)
\(\Rightarrow x_1+x_2=0\Rightarrow n-2=0\Rightarrow n=2\)
Thử lại với \(n=2\) thấy đúng. Vậy...
Tìm nghiệm của phương trình log 5 x + 2 = 2018 .
A. x = 5 2018 − 2
B. x = 2018 5 − 2
C. x = 5 2018 + 2
D. x = 2018 5 + 2
Tìm nghiệm của phương trình log 5 x + 2 = 2018 .
A. x = 5 2018 − 2
B. x = 2018 5 − 2
C. x = 5 2018 + 2
D. x = 2018 5 + 2
Đáp án A.
Ta có
log 5 x + 2 = 2018 ⇔ x + 2 = 5 2018 ⇔ x = 5 2018 − 2