Tính số cách rút ra đồng thời hai con bài từ cỗ bài tú lơ khơ 52 con.
A. 26
B. 2652
C. 1326
D. 104
Tính số cách rút ra đồng thời hai con bài từ cỗ bài tú lơ khơ 52 con.
A. 26
B. 2652
C. 1326
D. 104
Đáp án C.
Số cách rút 2 con bài từ 52 con bài là C 52 2 = 1326 .
Tính số cách rút ra đồng thời hai con bài từ cỗ bài tú lơ khơ 52 con
A. 26
B. 2652
C. 1326
D. 104
Tính số cách rút ra đồng thời hai con bài từ cỗ bài tú lơ khơ 52 con.
A. 26
B. 2652
C. 1326
D. 104
Đáp án C
Số cách rút 2 con bài từ 52 con bài là C 52 2
Từ cỗ bài tú lơ khơ 52 con, rút ngẫu nhiên cùng một lúc bốn con. Tính xác suất sao cho:
a. Cả bốn con đều là át.
b. Được ít nhất là một con át.
c. Được hai con át và hai con K
Không gian mẫu là kết quả của việc chọn ngẫu nhiên 4 con trong số 52 con
a. Đặt A : « Cả 4 con lấy ra đều là át »
⇒ n(A) = 1
b. + B : « Không có con át nào trong 4 con khi lấy ra »
⇒ B là kết quả của việc chọn ngẫu nhiên 4 con trong số 48 con còn lại
c. C: “Rút được 2 con át và 2 con K”.
Từ cỗ bài tú lơ khơ 52 con, rút ngẫu nhiên cùng một lúc 4 con. Tính xác suất sao cho :
a) Cả 4 con đều là át
b) Được ít nhất một con át
c) Được hai con át và hai con K
Phép thử T được xét là: "Từ cỗ bài tú lơ khơ 52 con bài, rút ngẫu nhiên 4 con bài".
Mỗi kết quả có thể có là một tổ hợp chập 4 của 52 con bài. Do đó số các kết quả có thể có của phép thử T là n(Ω) = C452 = = 270725.
Vì rút ngẫu nhiên nên các kết quả có thể có là đồng khả năng.
a) Gọi biến cố A: "Rút được bốn con át". Ta có, số kết quả có thể có thuận lợi cho A là n(A) = 1. Suy ra P(A) = ≈ 0,0000037.
b) Gọi biến cố B: "Rút được ít nhất một con át". Ta có
= "Rút được 4 con bài đều không là át". Mỗi kết quả có thể thuận lợi cho là một tổ hợp chập 4 của 48 con bài không phải là át. Suy ra số các kết quả có thể có thuận lợi cho là C448 = = 194580. Suy ra P() = ≈ 0,7187.
Qua trên ta có P(B) = 1 - P() ≈ 0,2813.
c) Gọi C là biến cố: "Rút được hai con át và hai con K".
Mỗi kết quả có thể có thuận lợi cho C là một tổ hợp gồm 2 con át và 2 con K. Vận dụng quy tắc nhân tính được số các kết quả có thể có thuận lợi cho C là
n(C) = C24 C24 = 6 . 6 = 36.
Suy ra P(C) = ≈ 0,000133.
Từ một cỗ bài tú lơ khơ gồm 52 con, lấy ngẫu nhiên lần lượt có hoàn lại từng con cho đến khi lần đầu tiên lấy được con át thì dừng. Tính xác suất sao cho
a) Quá trình lấy dừng lại ở lần thứ hai;
b) Quá trình lấy dừng lại sau không quá hai lần.
Kí hiệu A k : Lần thứ k lấy được con át , k ≥ 1 . Rõ ràng A 1 , A 2 độc lập.
a) Ta cần tính P ( A 1 ∩ A 2 ) .
Ta có:
b) Theo bài ra ta cần tính:
Từ một cỗ bài tú lơ khơ gồm 52 con, lấy ngẫu nhiên lần lượt có hoàn lại từng con cho đến khi lần đầu tiên lấy được con át thì dừng. Tính xác suất sao cho :
a) Quá trình lấy dừng lại ở lần thứ hai
b) Quá trình lấy dừng lại sau không quá hai lần
Kí hiệu \(A_k:\)" Lần thứ k lấy được con át", \(k\ge1\). Rõ ràng \(A_1,A_2\) độc lập
a) Ta cần tính \(P\left(\overline{A_1}\cap A_2\right)\). Ta có \(P\left(\overline{A_1}\cap A_2\right)=P\left(\overline{A_1}\right)P\left(A_2\right)=\dfrac{48}{52}.\dfrac{4}{52}\)
b) Theo bài ra ta cần tính :
\(P\left(A_1\right)+P\left(\overline{A_1}\cap A_2\right)=\dfrac{4}{52}+\dfrac{48}{52}.\dfrac{4}{52}\approx0,15\)
Không gian mẫu: \(n(\Omega)=C^3_{52}=22100\)
Rút được 2 con K từ 4 con: \(C^2_4=6\)
Rút con còn lại từ 52-4=48 (lá còn lại): \(C_{48}^1=48\)
\(\Rightarrow n\left(A\right)=6.48=288\)
\(\Rightarrow p\left(A\right)=\dfrac{288}{22100}=\dfrac{72}{5525}\)
Bộ bài tú - lơ khơ có 52 quân bài. Rút ngẫu nhiên ra 4 quân bài. Tính xác suất của các biến cố A: “Rút ra được tứ quý K”.
A. P ( A ) = 1 270725
B. P ( A ) = 4 270725
C. P ( A ) = 1 6497400
D. P ( A ) = 1 54145
Ta có số cách chọn ngẫu nhiên 4 quân bài là: C 52 4 = 270725
Suy ra Ω = 270725
Vì bộ bài chỉ có 1 tứ quý K nên ta có Ω A = 1
Vậy P ( A ) = 1 270725
Đáp án A