Cho tứ diện ABCD có C D = a 2 , Δ A B C là tam giác đều cạnh a, Δ A C D vuông tại A. Mặt phẳng (BCD) vuông góc với mặt phẳng (ABD). Thể tích của khối cầu ngoại tiếp tứ diện ABCD bằng
A . 4 π a 3 3 .
B . π a 3 6 .
C . 4 π a 3 .
D . π a 3 3 2 .
cho Δ ABC nhọn (AB <AC ) có ^A = 60 . D là TĐ của cạnh AC . Trên tia AB lấy điểm E / AE = AD . cm
a Δ ADE là Tam giác đều
b Δ DEC là tam giác cân
c CE ⊥ AB
Cho tứ diện ABCD có đáy BCD là tam giác đều, trọng tâm G. Δ là đường thẳng qua G và vuông góc với (BCD). A chạy trên Δ sao cho mặt câu ngoại tiếp ABCD có thể tích nhỏ nhất. Khi đó thể tích khối ABCD là:
A. a 3 12
B. a 3 2 12
C. a 3 3 12
D. a 3 3 6
Đáp án A.
Gọi I là tâm mặt cầu ngoại tiếp ABCD ⇒ I ∈ Δ và I A = I B = R
Thể tích mặt cầu ngoại tiếp ABCD nhỏ nhất <=> IB nhỏ nhất
⇔ I B ⊥ Δ ⇔ I ≡ G ⇒ I A = I B = B G = a 3 3 = A G ⇒ V A B C D = 1 3 S B C D . A G = 1 3 . 1 2 . a . a 3 2 . a 3 3 = a 2 12
Cho Δ ABC vuông tại A có góc B=300. Tia phân giác góc C cắt AB tại D. Kẻ DH vuông góc với BC (H ϵ BC).
a) C/m Δ BCD là tam giác cân và Δ ACH là tam giác đều.
b) Khi AB = 5cm. Tính BC, AC
c) Gọi I là giao điểm của HD và AC. C/m Δ IBC là tam giác đều và IC // với AH
Help mik các bạn ơi, please!
Bài 1: Cho Δ ABC vuông góc tại A có BC = 5cm, AC = 3cm, EF = 3cm, DE = DF = 2,5cm. Chọn phát biểu đúng?
A. Δ ABC ∼ Δ DEF
B. ABCˆ = EFDˆ
C. ACBˆ = ADFˆ
D. ACBˆ = DEFˆ
Bài 2: Cho hai tam giác Δ RSK và Δ PQM có: RS/PQ = RK/PM = SK/QM thì:
A. Δ RSK ∼ Δ PQM
B. Δ RSK ∼ Δ MPQ
C. Δ RSK ∼ Δ QPM
D. Δ RSK ∼ Δ QMP
Bài 3: Nếu Δ RSK ∼ Δ PQM có: RS/PQ = RK/PM = SK/QM thì
A. RSKˆ = PQMˆ
B. RSKˆ = PMQˆ
C. RSKˆ = MPQˆ
D. RSKˆ = QPMˆ
Bài 4: Chọn câu trả lời đúng?
A. Δ ABC, Δ DEF;AB/DE = AC/DF;Bˆ = Eˆ ⇒ Δ ABC ∼ Δ DEF
B. Δ ABC, Δ DEF;AB/DE = AC/DF;Cˆ = Fˆ ⇒ Δ ABC ∼ Δ DEF
C. Δ ABC, Δ DEF;AB/DE = AC/DF;Aˆ = Dˆ ⇒ Δ ABC ∼ Δ DEF
D. Δ ABC, Δ DEF;AB/DE = AC/DF;Aˆ = Eˆ ⇒ Δ ABC ∼ Δ DEF
Bài 5: Cho hình bên, ABCD là hình thang ( AB//CD ) có AB = 12,5cm; CD = 28,5cm; DABˆ = DBCˆ. Tính độ dài đoạn BD gần nhất bằng bao nhiêu?
A. 17,5 B. 18
C. 18,5 D. 19
II. Bài tập tự luận
Bài 1: Tứ giác ABCD có AB = 2cm; BC = 6cm; CD = 8cm; DA = 3cm và BD = 4cm. Chứng minh rằng:
a) Δ BAD ∼ Δ DBC
b) ABCD là hình thang
ai giúp mình đc không ạ ????????????????iu các bạn nhiều lắm các bạn trả lời đúng nha đừng sai đó :D
:))))))))
Bài 1: Cho hình bên, ABCD là hình thang ( AB//CD ) có AB = 12,5cm; CD =
28,5cm; DABˆ = DBCˆ. Tính độ dài đoạn BD gần nhất bằng bao nhiêu?
Bài 2: Tứ giác ABCD có AB = 2cm; BC = 6cm; CD = 8cm; DA = 3cm và BD =
4cm. Chứng minh rằng:
a) Δ BAD ∼ Δ DBC
b) ABCD là hình thang
Bài 3*: Cho hình vẽ như bên, biết EBAˆ = BDCˆ
a) Trong hình vẽ có bao nhiêu tam giác vuông? Kể tên các tam giác vuông đó.
b) Cho AE = 10cm, AB = 15cm, BC = 12cm. Hãy tính độ dài các đoạn thẳng CD,
BE, BD và ED (làm tròn đến chữ số thập phân thứ nhất)
c) So sánh diện tích tam giác BDE với tổng diện tích hai tam giác AEB và BCD
Bài 4: Trên một cạnh của một góc xOy ( Ox ≠ Oy ) đặt các đoạn thẳng OA = 5cm,
OB = 16cm Trên cạnh thứ hai của góc đó đặt các đoạn thẳng OC = 8cm, OD =
10cm.
a) Chứng minh Δ OCB ∼ Δ OAD
b) Gọi I là giao điểm của các cạnh AD và BC. Chứng minh rằng Δ IAB và Δ ICD
có các góc bằng nhau từng đôi một
zồi ôi dài quá
Cho Δ ABC có AB = 8cm,AC = 6cm,BC = 10cm. Tam giác A'B'C' đồng dạng với tam giác ABC có độ dài cạnh lớn nhất là 25 cm. Tính chu vi Δ A'B'C
Cho tam giác ABC vuông tại A có , đường cao AH. Trên tia đối của tia HB lấy điểm M sao cho HM = HB.
a) Chứng minh rằng HB < HC.
b) Chứng minh rằng AHB = AHM. Từ đó suy ra ABM là tam giác đều.
c) Gọi N là trung điểm của AC và O là giao điểm của AM và BN. Biết AB = 4 cm, tính độ dài đoạn thẳng AO.
Cho tam giác ABC có các đỉnh A(1;0), B(2;-3), C(-2;4) và đường thẳng Δ: x - 2y + 1 = 0. Đường thẳng Δ cắt cạnh nào của tam giác ABC?
A. AB và BC
B. AB và AC
C. AC và BC
D. Δ không cắt cạnh ΔABC
Đáp án: C
Thay lần lượt tọa độ của ba điểm A, B, C vào đường thẳng Δ ta được:
A: 1 - 2.0 + 1 = 2 > 0
B: 2 - 2.(-3) + 1 = 9 > 0
C: -2 - 2.4 + 1 = -9 < 0
Ta thấy: A và C nằm khác phía so với Δ nên Δ cắt cạnh AC
B và C nằm khác phía so với Δ nên Δ cắt cạnh BC
Cho ΔABC có góc A nhỏ hơn 90o. Vẽ ra ngoài tam giác ABC các tam giác vuông cân tại A là Δ ABM và ΔACN.
Chứng minh rằng:
a) Δ AMC = Δ ABN
b) BN ⊥ CM
c) giả sử ΔABC đều có cạnh = 4cm . chứng minh MN // BC
chỉ cần TL mỗi câu C thôi cũng đc nhanh lên nhé gấp lắm
Cho ΔABC có góc A nhỏ hơn 90o. Vẽ ra ngoài tam giác ABC các tam giác vuông cân tại A là Δ ABM và ΔACN.
Chứng minh rằng:
a) Δ AMC = Δ ABN
b) BN ⊥ CM
c) giả sử ΔABC đều có cạnh = 4cm . chứng minh MN // BC
chỉ cần TL mỗi câu C thôi cũng đc nhanh lên nhé gấp lắm