Tìm tất cả các giá trị của m để phương trình log 3 2 x − m + 2 log 3 x + 3 m − 1 = 0 có 2 nghiệm x 1 , x 2 sao cho x 1 . x 2 = 27
A. m=25
B. m=1
C. m=4/3
D. m=28/3
Tìm tất cả các giá trị của m để giá trị lớn nhất của hàm số f x = 2 x + m − 1 x + 1 trên đoạn [1;2] bằng 1
A. m=3
B. m=1
C. m=0
D. m=2
Đáp án C
Ta có f x = 2 x + m − 1 x + 1 → f ' x = 3 − m x + 1 2 ; ∀ x ∈ 1 ; 2
TH1: Với m < 3 , suy ra f ' x > 0 ; ∀ ∈ 1 ; 2 ⇒ f 2 = 1 ⇔ 3 + m 3 = 1 ⇔ m = 0 (nhận)
TH2: Với m>3 suy ra f ' x < 0 ; ∀ ∈ 1 ; 2 ⇒ f 1 = 1 ⇔ 1 + m 2 = 1 ⇔ m = 1 (loại)
Vậy m = 0 là giá trị cần tìm
Tất cả các giá trị của tham số m để hệ phương trình x - y = m x 2 - x y - m - 2 = 0 có nghiệm là
A. m = 0
B. m ≠ 0
C. m = 2
D. m ≠ 2
x - y = m ( 1 ) x 2 - x y - m - 2 = 0 ( 2 )
Từ (1), ta có y = x - m , thế vào (2) ta được phương trình:
x2 – x (x- m) – m - 2= 0 ⇔ x2 – x2 + mx –m –2 = 0
hay mx –m -2 = 0 (*) .
Hệ phương trình đã cho có nghiệm khi phương trình (*) có nghiệm ⇔ m ≠ 0 .
Chọn B.
Tìm tất cả các giá trị thực của tham số m để đường thẳng y = m cắt đồ thị hàm số y = x 4 − 2 x 2 − 2 tại 4 điểm phân biệt là
A. m>-3
B. − 3 < m < − 2
C. − 3 < m < 0
D. 3 < m < 0
Đáp án B
Dựa vào đồ thị hàm số y = x 4 − 2 x 2 − 2
Suy ra − 3 < m < − 2 là giá trị cần tì
tìm tất cả các giá trị của tham số m để phương tình sau có 3 nghiệm phân biệt lập thành một cấp số nhân: x3 -(m+3)x2+(3m+2)x-2m=0
x^3-x^2(m+3)+x(3m+2)-2m=0
=>(x-1)(x^2-(m+2)x+2m)=0
=>x=1 hoặc x^2-(m+2)x+2m=0
Để PT có 3 nghiệm thì (m+2)^2-4*2m>0 và 1^2-(m+2)+2m<>0
=>m<>1 và m<>2
=>x2=(m+2-m+2)/2=2 và x3=(m+2+m-2)/2=m
Để tạo thành cấp sô nhân thì
x1<x2<m hoặc m<x1<x2 hoặc x1<m<x2
=>m*1=2^2 hoặc 2m=1 hoặc m^2=2
=>m=4 hoặc m=1/2 hoặc m=căn 2
Tập tất cả các giá trị của tham số m để bất phương trình m 2 + 3 m x ≤ m 2 nghiệm đúng với mọi x là:
A. (0;1)
B. {0}
C. {0;1}
D. {1}
* Nếu m= 0 thì bất phương trình đã cho trở thành:
0x < 0( luôn đúng với mọi x).
* Nếu m= 1 thì bất phương trình đã cho trở thành:
0x < 1 ( luôn đúng với mọi x)
Tập tất cả các giá trị của tham số m để bất phương trình đã cho nghiệm đúng với mọi x là {0; 1}
Tập hợp tất cả các giá trị của tham số m để phương trình m - 1 x 2 + 2 x - 3 = 0 có hai nghiệm phân biệt là
A. ℝ = - 1
B. 2 3 ; + ∞
C. - ∞ ; 2 3
D. 2 3 ; 1 ∪ 1 ; + ∞
Tìm tất cả các giá trị m để bất phương trình \(\sqrt{\left(m+2\right)x+m}\ge\left|x-1\right|\)có nghiệm trên \(\left[0;2\right]\)
Tập tất cả các giá trị của tham số m để bất phương trình m 2 + 3 m x ≤ m 2 vô nghiệm là:
A. (-3;0)
B. {-3;0}
C. ∅
D. - ∞ ; 3
Để xét bất phương trình bậc nhất vô nghiệm hay luôn đúng với mọi x ta chỉ cần xét hệ số a= 0.
* Với m = 0 thì bất phương trình đã cho trở thành:
0 x ≤ 0 ( luôn đúng với mọi x) ( loại)
* Với m = -3 thì bất phương trình đã cho trở thành:
0 x ≤ 9 (luôn đúng với mọi x) ( loại)
Vậy không có giá trị nào của m để bất phương trình đã cho vô nghiệm
Cho bất phương trình x 4 + x 2 + m 3 - 2 x 2 + 1 3 + x 2 x 2 - 1 > 1 - m . Tìm tất cả các giá trị thực của tham số m để bất phương trình trên nghiệm đúng ∀ x > 1 .