Trong không gian Oxyz cho đường thẳng d và mặt phẳng (P) có phương trình: d : x − 12 4 = y − 9 3 = z − 1 1 ; P : 3 x + 5 y − z − 2 = 0 . Tìm tọa độ giao điểm.
A. (0;0;1)
B. (0;0;2)
C. (0;0;-2)
D. (1;2;-2)
Trong không gian Oxyz, cho mặt phẳng (P) có phương trình x+2y+z-4=0 và đường thẳng d: x + 1 2 = y 1 = z + 2 3 . Viết phương trình chính tắc của đường thẳng Δ nằm trong mặt phẳng (P), đồng thời cắt và vuông góc với đường thẳng d
A. x + 5 1 = y - 1 1 = z - 3 1
B. x - 5 1 = y + 1 1 = z + 3 1
C. x - 1 5 = y - 1 - 1 = z - 1 - 3
D. x + 1 5 = y + 1 - 1 = z + 1 - 3
Trong không gian Oxyz, cho đường thẳng d có phương trình x + 1 1 = y - 1 2 = x - 3 - 2 và mặt phẳng (P) có phương trình 2x-2y+z-3=0. Tìm góc giữa d và mặt phẳng (P).
A. 63º
B. 35º
C. 55º
D. 27º
Trong không gian Oxyz, cho điểm A(1; 2; -1), đường thẳng d có phương trình x - 3 1 = y - 3 3 = z 2
và mặt phẳng (a) có phương trình x + y - z + 3 = 0 . Đường thẳng D đi qua điểm A , cắt d và song song với mặt phẳng (a) có phương trình là
A. x - 1 1 = y - 2 - 2 = z + 1 - 1
B. x - 1 1 = y - 2 2 = z + 1 1
C. x - 1 1 = y - 2 2 = z - 1 1
D. x - 1 - 1 = y - 2 - 2 = z + 1 1
Trong không gian Oxyz, cho đuờng thẳng d : x − 2 1 = y − 4 2 = z − 5 2 và mặt phẳng P : 2 x + z − 5 = 0. Đường thẳng nằm trong mặt phẳng (P) cắt và vuông góc với đường thẳng d có phương trình là
A. x − 1 2 = y − 2 − 3 = z − 3 − 4
B. x − 1 2 = y − 2 5 = z − 3 − 4
C. x − 1 2 = y − 2 3 = z − 3 − 4
D. x − 1 2 = y − 2 − 5 = z − 3 − 4
C
Viết lại phương trình đường thẳng d : x = 2 + t y = 4 + 2 t z = 5 + 2 t .
Gọi I là giao điểm của d và (P)
Ta có I(1;2;3)
Vectơ chỉ phương của d: u → = 1 ; 2 ; 2 .
Vectơ pháp tuyến của (P): n → = 2 ; 0 ; 1
Đường thẳng a nằm trong mặt phẳng (P)
cắt và vuông góc với đường thẳng d nhận u → , n → = 2 ; 3 ; − 4 làm một vectơ chỉ phương.
Phương trình đường thẳng a là: x − 1 2 = y − 2 3 = z − 3 − 4 .
Trong không gian Oxyz cho đường thẳng d: x = 1 - t y = - 2 + t z = 3 + 2 t và mặt phẳng (P): x - 2y + 3z - 0 Đường thẳng △ nằm trong mặt phẳng (P)đồng thời cắt và vuông góc với đường thẳng d có phương trình là:
A. △ : x = 5 + 7 t y = - 6 + 5 t z = - 5 + t
B. △ : x = 5 + 7 t y = - 6 - 5 t z = - 5 + t
C. △ : x = 1 + 7 t y = - 2 + 5 t z = 3 + t
D. △ : x = 1 + 7 t y = 5 t z = 1 + t
Trong không gian Oxyz, cho mặt phẳng (P) có phương trình x + 2 y + z - 4 = 0 và đường thẳng d : x + 1 2 = y 1 = z + 3 2 . Viết phương trình chính tắc của đường thẳng∆nằm trong mặt phẳng (P), đồng thời cắt và vuông góc với đường thẳng d.
Đáp án C.
Gọi I là giao điểm của d và (P). Tọa độ I là nghiệm của hệ:
Ta có một vecto chỉ phương của ∆ như sau:
Vậy phương trình:
Chú ý: Do ∆ cắt d và ∆ nằm trong (P) nên ∆ phải đi qua I. Do đó ta có thể chọn được đáp là C mà không cần tìm VTCP của∆.
Trong không gian Oxyz, cho mặt phẳng ( P ) : x + y + z - 3 = 0 và đường thẳng d : x 1 = y + 1 2 = z - 2 - 1 . Đường thẳng d’ đối xứng với d qua mặt phẳng (P) có phương trình là
A. x - 1 1 = y - 1 - 2 = z - 1 7
B. x - 1 1 = y - 1 2 = z + 1 - 7
C. x - 1 1 = y + 1 - 2 = z + 1 7
D. x + 1 - 1 = y - 1 2 = z - 1 - 7
Trong không gian Oxyz, cho mặt phẳng (P): x + y + z - 3 = 0 và đường thẳng d : x 1 = y + 1 2 = z - 2 - 1 . Đường thẳng d' đối xứng với d qua mặt phẳng (P) có phương trình là
Trong không gian Oxyz, cho đường thẳng d : x - 1 1 = y - 2 2 = z - 3 1 và mặt phẳng ( α ) : x + y + z - 2 = 0 Đường thẳng nằm trong mặt phẳng ( α ) , đồng thời vuông góc và cắt đườn thẳng d có phương trình là
Trong không gian Oxyz, cho 2 đường thẳng d : x = - 1 - 2 t y = t z = - 1 + 3 t , d ' : x = 2 + t ' y = - 1 + 2 t ' z = - 2 t ' và mặt phẳng (P): x + y + z + 2 = 0. Đường thẳng vuông góc với mặt phẳng (P), cắt d và d' có phương trình là
Chọn A
Mặt phẳng (P) có vectơ pháp tuyến là n → =(1;1;1)
Gọi ∆ là đường thẳng cần tìm và
Ta có