x-3=55
r+r+3x5=85
Bài 4. Tính tổng và hiệu của các đa thức sau:
a) P(x) = 5x4 + 3x2 - 3x5 + 2x - x2 - 4 +2x5 và Q(x) = x5 - 4x4 + 7x - 2 + x2 - x3 + 3x4 - 2x2
b) H (x) = ( 3x5 - 2x3 + 8x + 9) - ( 3x5 - x4 + 1 - x2 + 7x) và R( x) = x4 + 7x3 - 4 - 4x ( x2 + 1) + 6x
ai giúp mình với
`@` `\text {Ans}`
`\downarrow`
`a)`
Thu gọn:
`P(x)=`\(5x^4 + 3x^2 - 3x^5 + 2x - x^2 - 4 +2x^5\)
`= (-3x^5 + 2x^5) + 5x^4 + (3x^2 - x^2) + 2x - 4`
`= -x^5 + 5x^4 + 2x^2 + 2x - 4`
`Q(x) =`\(x^5 - 4x^4 + 7x - 2 + x^2 - x^3 + 3x^4 - 2x^2\)
`= x^5 + (-4x^4 + 3x^4) - x^3 + (x^2 - 2x^2) + 7x - 2`
`= x^5 - x^4 - x^3 - x^2 + 7x - 2`
`@` Tổng:
`P(x)+Q(x)=`\((-x^5 + 5x^4 + 2x^2 + 2x - 4) + (x^5 - x^4 - x^3 - x^2 + 7x - 2)\)
`= -x^5 + 5x^4 + 2x^2 + 2x - 4 + x^5 - x^4 - x^3 - x^2 + 7x - 2`
`= (-x^5 + x^5) - x^3 + (5x^4 - x^4) + (2x^2 - x^2) + (2x + 7x) + (-4-2)`
`= 4x^4 - x^3 + x^2 + 9x - 6`
`@` Hiệu:
`P(x) - Q(x) =`\((-x^5 + 5x^4 + 2x^2 + 2x - 4) - (x^5 - x^4 - x^3 - x^2 + 7x - 2)\)
`= -x^5 + 5x^4 + 2x^2 + 2x - 4 - x^5 + x^4 + x^3 + x^2 - 7x + 2`
`= (-x^5 - x^5) + (5x^4 + x^4) + x^3 + (2x^2 + x^2) + (2x - 7x) + (-4+2)`
`= -2x^5 + 6x^4 + x^3 + 3x^2 - 5x - 2`
`b)`
`@` Thu gọn:
\(H (x) = ( 3x^5 - 2x^3 + 8x + 9) - ( 3x^5 - x^4 + 1 - x^2 + 7x)\)
`= 3x^5 - 2x^3 + 8x + 9 - 3x^5 + x^4 - 1 + x^2 - 7x`
`= (3x^5 - 3x^5) + x^4 - 2x^3 - x^2 + (8x + 7x) + (9+1)`
`= x^4 - 2x^3 - x^2 + 15x + 10`
\(R( x) = x^4 + 7x^3 - 4 - 4x ( x^2 + 1) + 6x\)
`= x^4 + 7x^3 - 4 - 4x^3 - 4x + 6x`
`= x^4 + (7x^3 - 4x^3) + (-4x + 6x) - 4`
`= x^4 + 3x^3 + 2x - 4`
`@` Tổng:
`H(x)+R(x)=` \((x^4 - 2x^3 - x^2 + 15x + 10)+(x^4 + 3x^3 + 2x - 4)\)
`= x^4 - 2x^3 - x^2 + 15x + 10+x^4 + 3x^3 + 2x - 4`
`= (x^4 + x^4) + (-2x^3 + 3x^3) - x^2 + (15x + 2x) + (10-4)`
`= 2x^4 + x^3 - x^2 + 17x + 6`
`@` Hiệu:
`H(x) - R(x) =`\((x^4 - 2x^3 - x^2 + 15x + 10)-(x^4 + 3x^3 + 2x - 4)\)
`=x^4 - 2x^3 - x^2 + 15x + 10-x^4 - 3x^3 - 2x + 4`
`= (x^4 - x^4) + (-2x^3 - 3x^3) - x^2 + (15x - 2x) + (10+4)`
`= -5x^3 - x^2 + 13x + 14`
`@` `\text {# Kaizuu lv u.}`
giai bai toan sau : 1:3x5+89-85/79:1/89x0,879 co ai giai duoc khong nao ?
a)1/1x3+1/3x5+1/5x7+...+1/Xx(x+3)=99/200
b)1/1x3+1/3x5+1/5x7+...+1/Xx(x+2)
a) \(\dfrac{1}{1\times3}+\dfrac{1}{3\times5}+\dfrac{1}{5\times7}+...+\dfrac{1}{x\times\left(x+3\right)}=\dfrac{99}{200}\)
Ta có: \(\left(1-\dfrac{1}{3}\right)\times\dfrac{1}{2}+\left(\dfrac{1}{3}-\dfrac{1}{5}\right)\times\dfrac{1}{2}+\left(\dfrac{1}{5}-\dfrac{1}{7}\right)\times\dfrac{1}{2}+...+\left(\dfrac{1}{x}-\dfrac{1}{x+3}\right).\dfrac{1}{2}=\dfrac{99}{200}\)
\(\dfrac{1}{2}\times\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{x}-\dfrac{1}{x+3}\right)=\dfrac{99}{200}\)
\(\dfrac{1}{2}\times\left(1-\dfrac{1}{x+3}\right)=\dfrac{99}{200}\)
\(1-\dfrac{1}{x+3}=\dfrac{99}{200}:\dfrac{1}{2}\)
\(1-\dfrac{1}{x+3}=\dfrac{99}{100}\)
\(\dfrac{1}{x+1}=1-\dfrac{99}{100}\)
\(\dfrac{1}{x+1}=\dfrac{1}{100}\)
\(\Rightarrow x+1=100\)
\(x=100-1\)
\(x=99\)
Công thức: \(\dfrac{1}{a\times b}=\) 1/ khoảng cách giữa a và b \(\times\left(\dfrac{1}{a}-\dfrac{1}{b}\right)\)
* Bạn làm theo công thức và vẫn dụng câu b nhé.
Cho hai đa thức
P ( x ) = - 5 x 3 - 2 x + 4 x 4 + 3 + 3 x 2 - 4 x 4 + 10 x 3 - 8 , Q ( x ) = 6 x 2 + 5 x 3 - 3 x 5 + 4 + 8 x - 4 x 2 + 3 x 5 - 10 x
c. x = 3, x = -3 có là nghiệm của đa thức N(x) không ? Vì sao ?
c. x = 3, x = -3 có là nghiệm của N(x) vì N(3) = N(-3) = 0 (0.5 điểm)
Cho hai đa thức
P ( x ) = - 5 x 3 - 2 x + 4 x 4 + 3 + 3 x 2 - 4 x 4 + 10 x 3 - 8 , Q ( x ) = 6 x 2 + 5 x 3 - 3 x 5 + 4 + 8 x - 4 x 2 + 3 x 5 - 10 x
b. Tính M ( x ) = P ( x ) + Q ( x ) ; N ( x ) = P ( x ) - Q ( x )
b. M(x) = P(x) + Q(x) = 10x3 + 5x2 - 4x - 1 (0.5 điểm)
N(x) = P(x) - Q(x) = x2 - 9 (0.5 điểm)
Cho hai đa thức
P ( x ) = - 5 x 3 - 2 x + 4 x 4 + 3 + 3 x 2 - 4 x 4 + 10 x 3 - 8 , Q ( x ) = 6 x 2 + 5 x 3 - 3 x 5 + 4 + 8 x - 4 x 2 + 3 x 5 - 10 x
d. Tính giá trị của đa thức A ( x ) = M ( x ) + 2 N ( x ) khi x = 1
d. A(x) = M(x) + 2N(x)
= 10x3 + 5x2 - 4x - 1 + 2(x2 - 9)
= 10x3 + 7x2 - 4x - 19 (0.5 điểm)
Thay x = 1 vào biểu thức ta có: A(1) = -6 (0.5 điểm)
Cho các đa thức P(x) = x – 2x2 + 3x5 + x4 + x – 1
và Q(x) = 3 – 2x – 2x2 + x4 – 3x5 – x4 + 4x2
a) Thu gọn và sắp xếp các đa thức trên theo lũy thừa giảm của biến.
b) Tính a/ P(x) + Q(x)b/ P(x) – Q(x).
\(B=\dfrac{3}{3x5}+\dfrac{3}{5x7}+\dfrac{3}{7x9}+....+\dfrac{3}{48x50}\)Tính nhanh:
\(B=\dfrac{3}{3x5}+\dfrac{3}{5x7}+\dfrac{3}{7x9}+....+\dfrac{3}{48x50}\)
\(B=\dfrac{3}{3x5}+\dfrac{3}{5x7}+\dfrac{3}{7x9}+....+\dfrac{3}{48x50}\)
\(B=\dfrac{3}{3x5}+\dfrac{3}{5x7}+\dfrac{3}{7x9}+....+\dfrac{3}{48x50}\)
Giải:
\(B=\dfrac{3}{3\times5}+\dfrac{3}{5\times7}+\dfrac{3}{7\times9}+...+\dfrac{3}{48\times50}\)
\(B=\dfrac{3}{2}\times\left(\dfrac{2}{3\times5}+\dfrac{2}{5\times7}+\dfrac{2}{7\times9}+...+\dfrac{2}{48\times50}\right)\)
\(B=\dfrac{3}{2}\times\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{48}-\dfrac{1}{50}\right)\)
\(B=\dfrac{3}{2}\times\left(\dfrac{1}{3}-\dfrac{1}{50}\right)\)
\(B=\dfrac{3}{2}\times\dfrac{47}{150}\)
\(B=\dfrac{47}{100}\)
Chúc em học tốt!
Cho hai đa thức
P ( x ) = - 5 x 3 - 2 x + 4 x 4 + 3 + 3 x 2 - 4 x 4 + 10 x 3 - 8 , Q ( x ) = 6 x 2 + 5 x 3 - 3 x 5 + 4 + 8 x - 4 x 2 + 3 x 5 - 10 x
a. Rút gọn và sắp xếp các đa thức trên theo lũy thừa giảm dần của biến .
a. Rút gọn và sắp xếp
P(x) = -5x3 - 2x + 4x4 + 3 + 3x2 - 4x4 + 10x3 - 8
= 5x3 + 3x2-2x-5 (0.75 điểm)
Q(x) = 6x2 + 5x3 - 3x5 + 4 + 8x - 4x2 + 3x5 - 10x
= 5x3 + 2x2 - 2x + 4 (0.75 điểm)