Cho hàm số y = f(x) xác định trên đoạn - 3 ; 5 và có bảng biến thiên như hình vẽ.
Khẳng định nào sau đây là đúng về min, max của hàm số trên [ - 3 ; 5 )
A. m i n y = 0
B. m a x y = 2 5
C. m a x y = 2
D. m i n y = - 2
Cho hàm số y = f(x) xác định trên tập số thực và có đạo hàm f'(x). Đồ thị hàm số y = f'(x) được cho bởi hình bên dưới. Biết rằng f(0) + f(1) - 2f(2) = f(4). - f(3). Giá trị nhỏ nhất của hàm số y = f(x) trên đoạn [0;4] là
A. f(1)
B. f(0)
C. f(2)
D. f(4)
Chọn D
Từ đồ thị của hàm số y = f'(x) ta suy ra bảng biến thiên của hàm số y = f(x) trên đoạn như sau:
Từ bảng biến thiên, ta có nhận xét sau:
Ta lại có: f(0) + f(1) - 2f(2) = f(4). - f(3)
Cho hàm số y = f(x) xác định, liên tục trên đoạn [-2;3] và có đồ thị là đường cong trong hình vẽ bên. Tìm số điểm cực đại của hàm số y = f(x) trên đoạn [-2; 3]
A. 1
B. 0
C. 2.
D. 3
Đáp án C.
Quan sát đồ thị hàm số, ta thấy có hai điểm cực đại thuộc đoạn [-2; 3]
Cho hàm số f(x) có đạo hàmf'(x) xác định và liên tục trên đoạn [0;6]. Đồ thị hàm số y=f'(x) như hình vẽ bên. Biết f(0)=f(3)=f(6)=-1,f(1)=f(5)=1. Số điểm cực trị của hàm số y = [ f ( x ) ] 2 trên đoạn [0;6] là
A. 5.
B. 7.
C. 9.
D. 8.
Cho hàm số y=f(x) xác định và liên tục trên đoạn 0 ; 7 2 có đồ thị hàm số y=f '(x) như hình vẽ. Hỏi hàm số y=f(x) đạt giá trị nhỏ nhất trên đoạn 0 ; 7 2 tại điểm x 0 nào dưới đây?
A. x 0 = 2
B. x 0 = 1
C. x 0 = 0
D. x 0 = 3
Cho hàm số y=f(x) xác định và liên tục trên R. Biết đồ thị của hàm số f'(x) như hình vẽ. Các điểm cực đại của hàm số y=f(x)trên đoạn [0;3] là
A. x=0 và x=2.
B. x=1 và x=3.
C. x=2.
D. x=0.
Cho hàm số y = f ( x ) xác định và liên tục trên đoạn [ - 1 ; 2 ] , có đồ thị của hàm số y = f ( x ) như hình sau:
Gọi M là giá trị lớn nhất của hàm y = f ( x ) trên đoạn [ - 1 ; 2 ] . Mệnh đề nào dưới đây đúng?
A. M = f ( 1 2 )
B. M = m a x { f ( - 1 ) ; f ( 1 ) ; f ( 2 ) }
C. M = f ( 3 2 )
D. M = f ( 0 )
Đáp án là B.
Từ đồ thị của hàm số y , = f ( x ) ta có bảng biến thiên của hàm số y = f ( x ) như hình vẽ:
Từ bảng biến thiên ta có: M = m a x { f ( - 1 ) ; f ( 1 ) ; f ( 2 ) }
Cho hàm số y=f(x) xác định và có đạo hàm trên đoạn [0;2]. Biết rằng f(2)=-3 và ∫ 0 2 x f ' ( x ) d x = - 4 . Tính tích phân ∫ 0 2 f ( x ) d x
A. -1
B. 0
C. -7
D. -2
Cho hàm số y = f(x) xác định và có đạo hàm trên đoạn [0;2]. Biết rằng f(2) = -3 và ∫ 0 2 x f ' ( x ) d x = - 4 Tính tích phân I = ∫ 0 2 f ( x ) d x
A. I = 2.
B. I = 0.
C. I = -7.
D. I = -2.
Đáp án D
Phương pháp:
Sử dụng công thức từng phần.
Cách giải:
Ta có :
Cho hàm số y = f(x) xác định trên R. Đồ thị hàm số y = f’(x) như hình vẽ bên. Đặt g ( x ) = f ( x ) - 1 3 x 3 - 3 4 x 2 + 3 2 x + 2018 . Điểm cực tiểu của hàm số g(x) đoạn [–3;1] là:
A. x C T = - 1
B. x C T = 1 2
C. x C T = - 2
D. x C T = 0
Đáp án A.
Phương pháp: Tính g’(x) tìm các nghiệm của phương trình g’(x) = 0
Điểm x0 được gọi là điểm cực tiểu của hàm số y = g(x) khi và chỉ khi g’(x0) = 0 và qua điểm x = x0 thì g’(x) đổi dấu từ âm sang dương.
Cách giải:
Khi x<1 ta có:
Khi x>1 ta có:
Qua x = 1, g’(x) đổi dấu từ dương sang âm => x = 1 là điểm cực đại của đồ thị hàm số y = g(x)
Chứng minh tương tự ta được x = –1 là điểm cực tiểu và x = –3 là điểm cực đại của đồ thị hàm số y = g(x)
Cho hàm số y=f(x) xác định trên ℝ và có đồ thị của hàm số f’(x) và các khẳng định sau:
(1). Hàm số y=f(x) đồng biến trên khoảng 1 ; + ∞
(2). Hàm số y=f(x) nghịch biến trên khoảng - ∞ ; - 2
(3). Hàm số y=f(x) nghịch biến trên khoảng - 2 ; 1 .
(4). Hàm số y = f x 2 đồng biến trên khoảng - 1 ; 0
(5). Hàm số y = f x 2 nghịch biến trên khoảng (1;2)
Số khẳng định đúng là
A. 4
B. 3
C. 2
D. 5