Đáp án là D
Trên [ - 3 ; 5 ) hàm số không có giá trị lớn nhất; giá trị nhỏ nhất của hàm số bằng -2.
Đáp án là D
Trên [ - 3 ; 5 ) hàm số không có giá trị lớn nhất; giá trị nhỏ nhất của hàm số bằng -2.
Cho hàm số y = f(x) xác định trên đoạn - 3 ; 5 và có bảng biến thiên như hình vẽ.
Khẳng định nào sau đây là đúng ?
A. m i n - 3 ; 5 y = 0
B. m a x - 3 ; 5 y = - 2
C. m a x - 3 ; 5 y = 2 5
D. m i n - 3 ; 5 y = - 2
Cho các số thực a, b, c, d thỏa mãn 0 < a < b < c < d và hàm số y = f(x). Biết hàm số y = f'(x) có đồ thị như hình vẽ. Gọi M và m lần lượt là giá trị lớn nhất và nhỏ nhất của hàm số y = f(x) trên [ 0 ; d ] . Khẳng định nào sau đây là khẳng định đúng?
A. M + m = f(b) + f(a)
B. M + m = f(d) + f(c)
C. M + m = f(0) + f(c)
D. M + m = f(0) + f(a)
Cho hàm số y = f(x) có bảng biến thiên như sau:
(I): Tập xác định của f(x): R \ {1}
(II): Hàm số f(x) có đúng 1 điểm cực trị
(III): min f(x) = -2
(IV): A(-1; 3) là điểm cực đại của đồ thị hàm số
Trong các phát biểu trên, có bao nhiêu phát biểu đúng?
A. 2
B. 3
C. 1
D. 0
Cho hàm số y=f(x) xác định trên ℝ và có đồ thị của hàm số f'(x), biết f(3)+f(20=f(0)+f(1) và các khẳng định sau:
1) Hàm số y=f(x) có 2 điểm cực trị
2) Hàm số y=f(x) đồng biến trên khoảng - ∞ ; 0
3) M a x 0 ; 3 f x = f 3
4) M a x ℝ f x = f 2
5) M a x - ∞ ; 2 f x = f 0 .
Số khẳng định đúng là
A. 2
B. 3
C. 4
D. 5
Cho hàm số y=f(x) xác định trên R và có bảng biến thiên như hình bên. Khẳng định nào sau đây là đúng?
A. Hàm số có đúng một cực trị.
B. Hàm số có GTLN bằng 2 và GTNN bằng 1.
C. Hàm số có giá trị cực tiểu bằng 3.
D. Hàm số đạt cực đại tại x = 1 và đạt cực tiểu tại x = 3.
Cho hàm số y = f(x) hàm xác định trên R\{2}, liên tục trên mỗi khoảng xác định và có bảng biến thiên như sau. Mệnh đề nào dưới đây đúng?
A. Hàm số có giá trị lớn nhất bằng 10
B. Giá trị cực đại của hàm số là y C D = 10
C. Giá trị cực tiểu của hàm số là y C T = - 3
D. Giá trị cực đại của hàm số là y C D = 3
Cho hàm số y=f(x) xác định và liên tục trên các khoảng ( - ∞ ; 0 ) , ( 0 ; + ∞ ) và có bảng biến thiên như sau
Tìm tất cả các giá trị thực của m để đường thẳng y=m cắt đổ thị hàm số y=f(x) tại 3 điểm phân biệt
A. - 4 ≤ m < 0
B. - 4 < m < 0
C. - 7 < m < 0
D. - 4 < m ≤ 0
Cho hàm số y = f(x) xác định trên ℝ và có đồ thị của hàm số f ' ( x ) , biết f ( 3 ) + f ( 2 ) = f ( 0 ) + f ( 1 ) và các khẳng định sau:
Hàm số y = f(x) có 2 điểm cực trị.
Hàm số y = f(x) đồng biến trên khoảng ( - ∞ ; 0 ) .
Max [ 0 ; 3 ] f ( x ) = f ( 3 ) .
Min ℝ f ( x ) = f ( 2 ) .
Max [ - ∞ ; 2 ] f ( x ) = f ( 0 ) .
Số khẳng định đúng là
A. 2.
B. 3.
C. 4.
C. 4.
Cho hàm số y = f x xác định, liên tục và có đạo hàm trên đoạn a , b . Xét các khẳng định sau:
1. Hàm số f x đồng biến trên a ; b thì f ' x > 0 , ∀ x ∈ a ; b
2. Giả sử f a > f c > f b , ∀ x ∈ a ; b suy ra hàm số nghịch biến trên a ; b
3. Giả sử phương trình f ' x = 0 có nghiệm là x = m khi đó nếu hàm số y = f x đồng biến trên m ; b thì hàm số y = f x nghịch biến trên a , m
4. Nếu f ' x ≥ 0 , ∀ x ∈ a ; b , thì hàm số đồng biến trên a ; b
Số khẳng định đúng trong các khẳng định trên là
A. 1
B. 0
C. 3
D. 2