Tìm x thuộc N sao cho 30 chia hết x; 45 chia hết x và x > 10
Bài 1:Cho a1,a2,....,a2018 thuộc Z
CMR:a1+a2+...+a2018 chia hết cho 30 khi và chỉ khi a1^5 + a2^5 +...+ a2018^5 chia hết cho 30\
Bài 2: Tìm x,y thuộc N* sao cho x+y+1 chia hết cho xy
Bài 3: tìm x,y thuộc N* sao cho y+1 chia hết cho x, x+1 chia hết cho y
Bài 4:Tìm x,y thuộc N* sao cho y+2 chia hết cho x, x+2 chia hết cho y
Bài 5: Tìm x,y thuộc N* sao cho 2x+1 chia hết cho y, 2y+1 chia hết cho x
Bài 6: CMR: Với mọi n thuộc Z ta có n^5 + 5n chia hết cho 6
Bài 7:CMR: Với mọi n thuộc Z ta có n(2n+7)(7n+1) chia hết cho 6
Giúp mình nhé, cảm ơn các bạn nhiều!!!
6 \(n^5+5n=n^5-n+6n=n\left(n^4-1\right)+6n=n\left(n^2-1\right)\left(n^2+1\right)+6n\)
\(=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)+6n\)
vì n,n-1 là 2 số nguyên lien tiếp \(\Rightarrow n\left(n-1\right)⋮2\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮2\)
n,n-1,n+1 là 3 sô nguyên liên tiếp \(\Rightarrow n\left(n-1\right)\left(n+1\right)⋮3\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮3\)
\(\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮2\cdot3=6\)
\(6⋮6\Rightarrow6n⋮6\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)-6n⋮6\Rightarrow n^5+5n⋮6\)(đpcm)
7 \(n\left(2n+7\right)\left(7n+1\right)=n\left(2n+7\right)\left(7n+7-6\right)=7n\left(n+1\right)\left(2n+7\right)-6n\left(2n+7\right)\)
\(=7n\left(n+1\right)\left(2n+4+3\right)-6n\left(2n+7\right)\)
\(=7n\left(n+1\right)\left(2n+4\right)+21n\left(n+1\right)-6n\left(2n+7\right)\)
\(=14n\left(n+1\right)\left(n+2\right)+21n\left(n+1\right)-6n\left(2n+7\right)\)
n,n+1,n+2 là 3 sô nguyên liên tiếp dựa vào bài 6 \(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮6\Rightarrow14n\left(n+1\right)\left(n+2\right)⋮6\)
\(21⋮3;n\left(n+1\right)⋮2\Rightarrow21n\left(n+1\right)⋮3\cdot2=6\)
\(6⋮6\Rightarrow6n\left(2n+7\right)⋮6\)
\(\Rightarrow14n\left(n+1\right)\left(n+2\right)+21n\left(n+1\right)-6n\left(2n+7\right)⋮6\)
\(\Rightarrow n\left(2n+7\right)\left(7n+1\right)⋮6\)(đpcm)
......................?
mik ko biết
mong bn thông cảm
nha ................
Bài 1:
a) Tìm số tự nhiên x lớn nhất biết rằng 480 chia hết cho x và 600 chia hết cho x
b) Tìm số tự nhiên x biết 126 chia hết cho x và 210 chia hết cho x sao cho 15 < x < 30
Bài 2: Tìm ƯC của 3n + 7 và n + 2 ( n thuộc N )
Tìm x thuộc N sao cho x chia hết 15; x chia hết 20 và 50 < x < 70
Tìm x thuộc N sao cho 30chia hết x; 45 chia hết x và x > 10
\(\Leftrightarrow x\in BC\left(15,20\right)=B\left(60\right)=\left\{0;60;120;...\right\}\text{ và }50< x< 70\\ \Leftrightarrow x=60\)
tìm x thuộc N sao cho
a) x+5 là ươc của 84x +11
b) 6x+20 chia hết cho 2x-1
c) 9x+30 chia hết cho x-3
a/ Tìm x thuộc N Sao cho N + 2 chia hết n - 1
b/ Tìm x thuộc N Sao cho 2n + 7 chia hết cho n+1
Viết thế này dễ nhìn nefk (n+2)/(n-1) =(n-1+3)/(n-1)
=1+3/(n-1) vì n+2 chia cho n-1 =1 dư 3/(n-1)
để n+2 chia hết cho n-1 thì 3/(n-1) là số nguyên
3/(n-1) nguyên khi (n-1) là Ước của 3
khi (n-1) ∈ {±1 ; ±3}
xét TH thôi :
n-1=1 =>n=2 (tm)
n-1=-1=>n=0 (tm)
n-1=3=>n=4 (tm)
n-1=-3=>n=-2 (loại) vì n ∈N
Vậy tại n={0;2;4) thì n+2 chia hết cho n-1
--------------------------------------...
b, (2n+7)/(n+1)=(2n+2+5)/(n+1)=[2(n+1)+5]/(...
2n+7 chia hêt cho n+1 khi 5/(n+1) là số nguyên
khi n+1 ∈ Ước của 5
khi n+1 ∈ {±1 ;±5} mà n ∈N => n ≥0 => n+1 ≥1
vậy n+1 ∈ {1;5}
Xét TH
n+1=1=>n=0 (tm)
n+1=5>n=4(tm)
Vâyj tại n={0;4) thì 2n+7 chia hêt scho n+1
--------------------------------------...
Chúc bạn học tốt
a/ N + 2 chia hết n - 1
có nghĩa là \(\frac{n+2}{n-1}\) là số nguyên
\(\frac{n+2}{n-1}=1+\frac{3}{n-1}\) muốn nguyên thì n-1 thuộc Ư(3)={-1,-3,1,3}
n-1=-1=>n=0n-1=1=>n=2n-1=-3=>n=-2n-1=3=>n=4do n thuộc N => cacsc gtri thỏa là {0,2,4}
b/ 2n + 7 chia hết cho n+1 có nghĩa là : \(\frac{2n+7}{n+1}=2+\frac{5}{n+1}\)
là số nguyên
để nguyên thì n+1 thuộc Ư(5)={1,5,-1,-5}
n+1=1=>n=0n+1=-1=>n=-2n+1=5=>n=4n+1=-5=>n=-6do n thuộc N nên : các giá trị n la : {0;4}
a) \(\frac{n+2}{n-1}\Leftrightarrow\frac{n-1+3}{n-1}=\frac{3}{n-1}\)
Để 3 chia hết cho n - 1 thì n - 1 thuộc Ư (3)
Ư (3) = {1;-1;3;-3}
=> n = {2;0;4;-2}
Mà n thuộc n nên loại 2 vậy n = {2;0;4}
b) \(\frac{2n+7}{n+1}=\frac{n+1+6.2}{n+1}=\frac{12}{n+1}\)
Để 4 chia hết n+1 thì n+1 thuộc Ư(12)
Ư (12) = {1;2;3;4;-1;-2;-3;-4;-12}
=> n thuộc N loại số âm.
n + 1 = 1 => n = 0
n + 1 = 2 => n = -1 (loại)
n + 1 = 3 => n = -2 (loại)
n + 1 = -12 => n = -13 (loại)
a). tìm x thuộc N / x chia hết cho sáu và x bé hơn 20
b ). tìm x thuộc N / 30 chia hết cho x và x nhỏ hơn 10
c).tìm x thuộc N /x là Bội của 12 và x có hai chữ số
Tìm x thuộc N, biết:
a) 16 chia hết cho ( x + 8 )
b) ( x + 30 ) chia hết cho (x + 4 )
a) 16 chia hết cho x+8
=>x+8=Ư(16)=(1,2,4,8,16)
Vì x thuộc N
=>x>_0
=>x+8>_8
=>x+8=8,16
=>x=0,8
b) x+30 chia hết cho x+4
=>x+4+26 chia hết cho x+4
=>26 chia hết cho x+4
=>x+4=Ư(26)=(1,2,13,26)
Vì x thuộc N
=>x>_0
=>x+4>_4
=>x+4=(13,26)
=>x=9,22
Bài 1 : Tìm n thuộc N* sao cho: n^2 + 9n -2 chia hết cho 11.
Bài 2: Tìm x thuộc Z sao cho x^3 - 8x^2 + 2x chia hết cho x^2 +1
áp dụng tính chất chia hết của một tổng,hãy tìm x thuộc tập 15;17;29;60 sao cho x+ 30 chia hết cho 5
Để (x + 30) chia hết cho 5 mà 30 chia hết cho 5, áp dụng tính chất chia hết của một tổng
nên x phải chia hết cho 5
Các số chia hết cho 5 trong tập trên là: 15; 50
Vì x thuộc tập {15; 17; 29; 60} do đó x ∈ {15; 60}
Vậy x ∈ {15; 60}.
#TEAM.Lục Đại Khuyển Vương.I'm Nhị
Ta có những số chia hết cho 5 là những số có số tận cùng là 0 và 5. Mà 30 chia hết cho 5 và có số tận cùng là 0
=> x phải có số tận cùng là 5;0
=>x thuộc {15;60}
HT