Tìm tất cả các giá trị thực của tham số m để sao cho đồ thị của hàm số y = x 4 + 2 mx 2 + m 2 + 2 m có ba điểm cực trị và khoảng cách giữa hai điểm cực tiểu bằng 4.
A. m = -4
B. m = 5
C. m = 1 2
D. m = 3
tìm tất cả các giá trị thực của tham số m sao cho đồ thị của hàm số \(y=\dfrac{x^2-mx-2m^2}{x-2}\) có tiệm cận đứng .
Hàm có tiệm cận đứng khi và chỉ khi \(x^2-mx-2m^2=0\) vô nghiệm hoặc không có nghiệm \(x=2\)
\(\Rightarrow\left[{}\begin{matrix}\Delta=m^2+8m^2< 0\\4-2m-2m^2\ne0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}m\ne1\\m\ne-2\end{matrix}\right.\)
tìm tất cả các giá trị thực của tham số m sao cho đồ thị của hàm số \(y=\dfrac{x+1}{\sqrt{mx^2+1}}\) có 2 tiệm cận ngang.
Với \(m=0\) ko thỏa mãn
Với \(m\ne0\)
\(\lim\limits_{x\rightarrow-\infty}\dfrac{x+1}{\sqrt{mx^2+1}}=-\dfrac{1}{\sqrt{m}}\); \(\lim\limits_{x\rightarrow+\infty}\dfrac{x+1}{\sqrt{mx^2+1}}=\dfrac{1}{\sqrt{m}}\)
\(\Rightarrow\) Hàm có 2 TCN khi \(\sqrt{m}\) xác định \(\Rightarrow m>0\)
Tìm tất cả các giá trị thực của tham số m để đường thẳng y = m x − m + 1 cắt đồ thị hàm số y = x 3 − 3 x 2 + x + 2 tại ba điểm phân biệt A, B, C sao cho AB=BC.
A. m ∈ − ∞ ; 0 ∪ 4 ; + ∞
B. m ∈ ℝ
C. m ∈ − 5 4 ; + ∞
D. m ∈ − 2 ; + ∞
Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số y = m x − 8 x + 2 có tiệm cận đứng
A. m = 4
B. m = − 4
C. m ≠ 4
D. m ≠ − 4
Đáp án D
Hàm số có tiệm cận đứng
⇔ P T m x − 8 = 0 không có nghiệm x = − 2.
Suy ra − 2 m − 8 ≠ 0 ⇔ m ≠ − 4.
Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số y = m x − 8 x + 2 có tiệm cận đứng
A. m = 4
B. m = − 4
C. m ≠ 4
D. m ≠ − 4
Đáp án D
Hàm số có tiệm cận đứng ⇔ P T m x − 8 = 0 không có nghiệm x=-2
Suy ra − 2 m − 8 ≠ 0 ⇔ m ≠ − 4.
Tìm tất cả các giá trị thực của tham số m để đường thẳng y= - mx cắt đồ thị của hàm số y= x3- 3x2-m+ 2 tại ba điểm phân biệt A; B; C sao cho AB= BC.
A. m< 1
B. m> 2
C. m < 3
D. m> 4
+ Hoành độ giao điểm là nghiệm của phương trình
x3- 3x2-m+ 2= -mx hay ( x-1) ( x2-2x+ m-2) =0
Hay x=1; x2-2x+m-2=0
+ Đặt nghiệm x2= 1; từ giải thiết bài toán trở thành tìm m để phương trình có 3 nghiệm lập thành cấp số cộng. Khi đó phương trình : x2-2x+m-2 = 0 phải có 2 nghiệm phân biệt (vì theo hệ thức Viet ta có: x1+ x3= 2= 2x2 ).
Vậy khi đó ta cần ∆’ > 0( để phương trình có 2 nghiệm phân biệt )
∆’=1-(m-2)>0 ⇔ m < 3
Chọn C.
Tìm tất cả các giá trị thực của tham số m sao cho đồ thị của hàm số y = 2 x 3 - 2 + m x + m cắt trục hoành tại 3 điểm phân biệt
A. m > - 1 2
B. m > - 1 2 , m ≠ 4
C. m > 1 2
D. m ≤ 1 2
Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số y = x 3 − 3 x 2 − m x + 2 có hai điểm cực trị A và B sao cho các điểm A, B và M(0;3) thẳng hàng.
A. m = -3
B. Không tồn tại m
C. m = − 2
D. m = 3
Câu 3 Để đồ thị hàm số \(y=-x^4-\left(m-3\right)x^2+m+1\) có điểm cực đạt mà không có điểm cực tiểu thì tất cả giá trị thực của tham số m là
Câu 4 Cho hàm số \(y=x^4-2mx^2+m\) .Tìm tất cả các giá trị thực của m để hàm số có 3 cực trị
Tìm tất cả các giá trị thực của tham số m để đường thẳng y = m x - m - 1 cắt đồ thị hàm số y = x 3 - 3 x 2 + x tại ba điểm A, B, C phân biệt sao cho AB = BC.
A. m ∈ - 5 4 ; + ∞
B. m ∈ ( - ∞ ; 0 ) ∪ ( 4 ; + ∞ )
C . m ∈ ( - 2 ; + ∞ )
D . m ∈ R