Xác định số thực x để dãy số theo thứ tự đó lập thành một cấp số cộng
A. 7 2
B. 49 2
C. 2 49
D. 2 7
Cho ba số thực a, b, c khác 0. Xét các phát biểu sau
(1) Nếu a, b, c theo thứ tự đó lập thành cấp số cộng
(công sai khác 0) thì ba số 1 a , 1 b , 1 c theo thứ tự đó
cũng lập thành cấp số cộng
(2) Nếu a, b, c theo thứ tự đó lập thành cấp số nhân
thì ba số 1 a , 1 b , 1 c theo thứ tự đó cũng lập thành cấp
số nhân.
Khẳng định nào sau đây là đúng ?
A. (1) đúng, (2) sai
B. cả (1) và (2) đúng
C. cả (1) và (2) sai
D. (2) đúng, (1) sai
Xác định để 3 số :1-x; x 2 ; 1+x theo thứ tự lập thành một cấp số cộng?
A. Không có giá trị nào của x.
B. 2; -2
C..1; -1
D.0
Với các số thực dương x, y. Ta có 8 x , 4 x , 2 theo thứ tự lập thành một cấp số nhân và các số log 2 45 , log 2 y , log 2 x theo thứ tự lập thành cấp số cộng. Khi đó y bằng:
A. 225
B. 15
C. 105
D. 105
Chọn B
Từ 8 x , 4 x , 2 theo thứ tự lập thành một cấp số nhân nên công bội q = 2 4 4 = 1 2 7
Suy ra 4 4 = 8 x . 1 2 7 ⇒ x = 5
Mặt khác log 2 45 , log 2 y , log 2 x theo thứ tự lập thành cấp số cộng suy ra
⇔ log 2 y = log 2 45 + log 2 5 : 2
⇔ log 2 y = log 2 225
⇔ y = 15
Với các số thực dương x, y. Ta có 8 x , 4 4 , 2 theo thứ tự lập thành một cấp số nhân và các số log 2 45 , log 2 y , log 2 x theo thứ tự lập thành cấp số cộng. Khi đó y bằng:
A. 225.
B. 15.
C. 105.
D. 150
Câu 1:
Cho một dãy số có các số hạng đầu tiên là 1,8,22,43,..... Hiệu của 2 số hạng liên tiếp của dãy đó lập thành một cấp số cộng: 7,14,21,...7n. Số 35351 là số hạng thứ mấy của cấp số đã cho?
Câu 2:
Cho tam giác ABC, có 3 cạnh a,b,c theo thứ tự lập thành 1 cấp số cộng. Tính giá trị biểu thức P= cot\(\dfrac{A}{2}\). cot \(\dfrac{C}{2}\)
Câu 3:
Cho 2 cấp số cộng hữu hạn, mỗi cấp số có 100 số hạng:4,7,10,13,16,... và 1,6,11,16,21,... Hỏi có tất cả bao nhiêu số có mặt trong cả 2 cấp số trên?
Câu 1:
Dãy đã cho có thể viết dưới dạng công thức truy hồi sau:
\(\left\{{}\begin{matrix}u_1=1\\u_{n+1}=u_n+7n\end{matrix}\right.\)
\(u_{n+1}=u_n+7n\Leftrightarrow u_{n+1}-\dfrac{7}{2}\left(n+1\right)^2+\dfrac{7}{2}\left(n+1\right)=u_n-\dfrac{7}{2}n^2+\dfrac{7}{2}n\)
Đặt \(v_n=u_n-\dfrac{7}{2}n^2+\dfrac{7}{2}n\Rightarrow\left\{{}\begin{matrix}v_1=1\\v_{n+1}=v_n\end{matrix}\right.\)
\(\Rightarrow v_{n+1}=v_n=v_{n-1}=...=v_1=1\)
\(\Rightarrow u_n-\dfrac{7}{2}n^2+\dfrac{7}{2}n=1\)
\(\Leftrightarrow u_n=\dfrac{7}{2}n^2-\dfrac{7}{2}n+1\)
\(\dfrac{7}{2}n^2-\dfrac{7}{2}n+1=35351\)
\(\Leftrightarrow\dfrac{7}{2}n^2-\dfrac{7}{2}n-35350=0\)
\(\Rightarrow n=101\)
Vậy đó là số hạng thứ 101
2.
Do a;b;c lập thành 1 cấp số cộng
\(\Rightarrow a+c=2b\)
\(\Leftrightarrow2R.sinA+2R.sinC=2.2R.sinB\)
\(\Leftrightarrow sinA+sinC=2sinB\)
\(\Leftrightarrow2sin\dfrac{A+C}{2}.cos\dfrac{A-C}{2}=4sin\dfrac{B}{2}cos\dfrac{B}{2}\)
\(\Leftrightarrow cos\dfrac{B}{2}cos\dfrac{A-C}{2}=2sin\dfrac{B}{2}cos\dfrac{B}{2}\)
\(\Leftrightarrow cos\dfrac{A-C}{2}=2sin\dfrac{B}{2}=2cos\dfrac{A+C}{2}\)
\(\Leftrightarrow cos\left(\dfrac{A}{2}\right)cos\left(\dfrac{C}{2}\right)+sin\left(\dfrac{A}{2}\right)sin\left(\dfrac{C}{2}\right)=2cos\left(\dfrac{A}{2}\right)cos\left(\dfrac{C}{2}\right)-2sin\left(\dfrac{A}{2}\right)sin\left(\dfrac{C}{2}\right)\)
\(\Leftrightarrow cos\left(\dfrac{A}{2}\right).cos\left(\dfrac{C}{2}\right)=3sin\left(\dfrac{A}{2}\right).sin\left(\dfrac{C}{2}\right)\)
\(\Leftrightarrow cot\left(\dfrac{A}{2}\right).cot\left(\dfrac{C}{2}\right)=3\)
3.
Công thức số hạng tổng quát của dãy đầu: \(u_n=4+3\left(n-1\right)=3n+1\)
Với \(1\le n\le100\)
Công thức số hạng tổng quát của dãy sau: \(v_m=1+5\left(m-1\right)=5m-4\)
Với \(1\le m\le100\)
Các số hạng của 2 dãy trùng nhau khi:
\(3n+1=5m-4\)
\(\Leftrightarrow5m=3n+5\Leftrightarrow m=\dfrac{3n}{5}+1\)
\(\Rightarrow n⋮5\Rightarrow n=5k\)
Mà \(1\le n\le100\Rightarrow1\le5k\le100\Rightarrow1\le k\le20\)
\(\Rightarrow\) Hai dãy số có 20 số hạng trùng nhau
Vậy số số có mặt trong 2 dãy trên là: \(100+100-20=180\) số
Tam giác ABC có \(\cot A,\cot B,\cot C\) theo thứ tự đó lập thành một cấp số cộng. Hãy chứng minh rằng \(a^2,b^2,c^2\) theo thứ tự đó cũng lập thành một cấp số cộng ?
Theo giả thiết ta có : \(\cot A+\cot C=2\cot B\)
\(\Leftrightarrow\frac{\sin\left(A+C\right)}{\sin A\sin C}=\frac{2\cos B}{\sin B}\)
\(\Leftrightarrow\sin^2B=2\sin B\sin C\cos B=\left[\cos\left(A-C\right)-\cos\left(A+C\right)\right]\cos B\)
\(\Leftrightarrow\sin^2B=\cos\left(A-C\right)\cos B-\cos\left(A+C\right)\cos B=-\cos\left(A-C\right)\cos\left(A+C\right)+\cos^2B\)
\(\Leftrightarrow\sin^2B=-\frac{1}{2}\left(\cos2A+\cos2C\right)+1-\sin^2B=-\frac{1}{2}\left(1-2\sin^2A+1-2\sin^2C\right)+1-\sin^2B\)
\(\Rightarrow2\sin^2B=\sin^2A+\sin^2C\Leftrightarrow2b^2=a^2+c^2\)
Vậy chứng tỏ \(a^2,b^2,c^2\) theo thứ tự đó cũng lập thành một cấp số cộng
Xác định a để 3 số 1 + 2 a ; 2 a 2 - 1 ; - 2 a theo thứ tự thành lập một cấp số cộng?
A. không có giá trị nào của a
B. a = ± 3 4
C. a = ± 3
D. a = ± 3 2
Chọn D
Theo công thức cấp số cộng ta có:
2 ( 2 a 2 - 1 ) = ( 1 + 2 a ) + ( - 2 a )
⇔ a 2 = 3 4 ⇔ a = ± = 3 2
Có bao nhiêu cặp số thực (x;y) thỏa mãn: ba số 4x-2y, 3x+y, x+6y theo thứ tự lập thành một cấp số cộng và ba số (y+2)2, xy-1, (x+1)2 theo thứ tự lập thành cấp số nhân
A. 1
B. 2
C. 3
D. 0
Các số x+ 6y ; 5x + 2y; 8x + y theo thứ tự đó lập thành một cấp số cộng; đồng thời các số x- 1 ; y + 2 ; x – 3y theo thứ tự đó lập thành một cấp số nhân. Tính x 2 + y 2
A. 40
B. 25
C. 100
D. 10
Theo giả thiết ta có x + 6 y + 8 x + y = 2 5 x + 2 y x − 1 x − 3 y = y + 2 2
⇔ x = 3 y 3 y − 1 3 y − 3 y = y + 2 2 ⇔ x = 3 y 0 = y + 2 2 ⇔ x = − 6 y = − 2 .
Suy ra x 2 + y 2 = 40.
Chọn đáp án A.