Có bao nhiêu số thực mm để bất phương trình m x 4 - 1 + m 2 x 2 - 1 - m 3 x - 1 ≥ 0 nghiệm đúng với mọi số thực x.
A.3.
B. 1.
C. Vô số.
D. 2.
Có bao nhiêu giá trị thực của tham số m để bất phương trình (m2-4)x<m+2 vô nghiệm
A.0 B.1 C.2 D.vô số
(cho mình lời giải chi tiết nha)
BPT đã cho vô nghiệm khi:
\(\left\{{}\begin{matrix}m^2-4=0\\m+2\le0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m=\pm2\\m\le-2\end{matrix}\right.\) \(\Rightarrow m=-2\)
B đúng
Có bao nhiêu nghiệm nguyên thuộc khoảng (-9;9) của tham số m để bất phương trình sau có nghiệm thực: 3 logx ≤ 2 log m x - x 2 - ( 1 - x ) 1 - x ?
A. 6.
B. 7.
C. 10.
D. 11.
Có bao nhiêu giá trị nguyên thuộc khoảng (-9; 9) của tham số m để bất phương trình 3 log x ≤ 2 log m x − x 2 − 1 − x 1 − x
có nghiệm thực?
A. 6
B. 7
C. 10
D. 11
Đáp án B.
Phương pháp:
Bất phương trình m ≥ f x , x ∈ D có nghiệm khi và chỉ khi m ≥ M i n D f x .
Cách giải:
ĐKXĐ: 0 < x < 1
3 log x ≤ 2 log m x − x 2 − 1 − x 1 − x ⇔ m x − x 2 − 1 − x 1 − x ≥ x x
⇔ m ≥ x x + 1 − x 1 − x x − x 2 , x ∈ 0 ; 1
Để bất phương trình đã cho có nghiệm thực thì m ≥ M i n 0 ; 1 f x , f x = x x + 1 − x 1 − x x − x 2
Xét
f x = x x + 1 − x 1 − x x − x 2 = x + 1 − x 1 − x x − 1 x x − 1 , x ∈ 0 ; 1
Đặt t = x + 1 − x , t ∈ 1 ; 2
Khi đó,
f x = x + 1 − x 1 − x 1 − x x 1 − x = t 1 − t 2 − 1 2 t 2 − 1 2 = t 3 − t 2 t 2 − 1 = 3 t − t 3 t 2 − 1 = g t
g ' t = − t 4 − 3 t 2 − 1 2 < 0 , ∀ t ∈ 1 ; 2
⇒ g t min = g 2 = 3 2 − 2 2 2 − 1 = 2 ⇒ M i n 0 ; 1 f x = 2 ⇒ m ≥ 2
Mà
m ∈ − 9 ; 9 ⇒ m ∈ 2 ; 3 ; 4 ; ... ; 8 ⇒
Có 7 giá trị thỏa mãn.
Có bao nhiêu giá trị nguyên thuộc khoảng (-9;9) của tham số m để bất phương trình 3 log x ≤ 2 log m x - x 2 - 1 - x 1 - x có nghiệm thực?
A. 6.
B. 7.
C. 10.
D. 11.
Có bao nhiêu số nguyên m để bất phương trình x 6 + 6 x 4 + 15 - 3 m 2 x 2 - 6 m x + 10 ≥ 0 nghiệm đúng với mọi số thực x.
A. 4
B. 3
C. Vô số
D. 5
Chọn đáp án D.
Bất phương trình tương đương với
trong đó hàm số f t = t 3 + 3 t đồng biến trên R
Vậy y c b t ⇔ x 2 - m x + 1 ≥ 0 , ∀ x
Có 5 số nguyên thoả mãn
Có bao nhiêu số nguyên m để bất phương trình x 6 + 6 x 4 - m 3 x 3 + 15 - 3 m 2 x 2 - 6 m x + 10 ≥ 0 nghiệm đúng với mọi số thực x.
A. 4
B. 3
C. Vô số
D. 5
Bất phương trình tương đương với:
trong đó hàm số f ( t ) = t 3 + 3 t đồng biến trên R.
Vậy
Có 5 số nguyên thoả mãn.
Chọn đáp án D.
Cho bất phương trình 3 + x + 1 - x ≤ m + 1 - x 2 - 2 x . Tìm tất cả các giá trị thực của tham số m để bất phương trình có nghiệm thực.
A. m ≥ 25 4
B. m ≥ 4
C. m ≥ 6
D. m ≥ 7
Có bao nhiêu giá trị thực của m để bất phương trình 2 m + 2 x + 1 x 3 − 1 − m 2 + m + 1 x 2 − 1 + 2 x + 2 < 0 vô nghiệm
A. Vô số
B. 0
C. 1
D. 2
Có bao nhiêu giá trị thực của tham số m để bất phương trình m 2 - m x < m vô nghiệm là?
Rõ ràng nếu
thì bất phương trình luôn có nghiệm.
Với m = 0, bất phương trình trở thành 0x < 0: vô nghiệm.
Với m = 1, bất phương trình trở thành 0x < 1: luôn đúng với mọi x ∈ R
Vậy với m = 0 thì bất phương trình trên vô nghiệm.