Tìm tập hợp tất cả các giá trị của tham số m để hàm số y = 1 3 x 3 + 2 x 2 - 2 m - 3 x + 4 đồng biến trên - 1 ; + ∞ .
Tìm tập hợp tất cả các giá trị của tham số m để hàm số y = x 2 + 3 - m ( x + 1 ) đồng biến trên khoảng ( - ∞ ; + ∞ )
A. [ 1 ; + ∞ )
B. [ - 1 ; 1 ]
C. ( - ∞ ; - 1 ]
D. ( - ∞ ; 1 )
Tìm tập hợp tất cả các giá trị thực của tham số m để hàm số y = | x | 3 - ( 2 m + 1 ) x 2 + 3 m | x | - 5 có 3 điểm cực trị.
A. - ∞ ; 1 4
B. 1 ; + ∞
C. ( - ∞ ; 0 ]
D. 0 ; 1 4 ∪ 1 ; + ∞
Cho hàm số y = 2 x 3 - 3 m x 2 + 3 ( 5 m 2 + 1 ) x - 3 s i n x với m là tham số thực. Tìm tập hợp tất cả các giá trị của m để hàm số đồng biến trên (l;3).
A . m ≥ 1
B . m ≤ - 1
C . m > 0
D . m ∈ R
Tìm tập hợp tất cả các giá trị thực của tham số m để hàm số y = 1 3 x 3 - ( m + 1 ) x 2 + ( m 2 + 2 m ) x - 3 nghịch biến trên khoảng ( 0 ; 1 )
A. [ - 1 ; + ∞ )
B. ( - ∞ ; 0 ]
C. [ - 1 ; 0 ]
D. [ 0 ; 1 ]
Cho hàm số y = x 3 - 3 ( m + 1 ) x 2 + 3 ( 7 m - 3 ) x . Gọi S là tập hợp tất cả các giá trị nguyên của tham số m để hàm số không có cực trị. Số phần tử của S là
A. 2
B. 4
C. 0
D. Vô số
Câu 1 : Tìm tất cả các giá trị của tham số thực m để hàm số \(y=mx^3-2mx^2+\left(m-2\right)x+1\) không có cực trị
Câu 2: Tìm tất cả các giá trị thực của tham số m để hàm số \(y=\left(m-1\right)x^4-2\left(m-3\right)x^2+1\) không có cực đại
Tìm tập hợp T tất cả các giá trị của tham số m để hàm số y = x 3 - 2 m x 2 + m 2 x + 1 đạt cực tiểu tại x=1
A. T={3}
B. T = ∅
C. T={1;3}
D. T={1}
Tìm tập hợp T tất cả các giá trị của tham số m để hàm số y = x 3 - 2 mx 2 + m 2 x + 1 đạt cực tiểu tại x= 1
A.
B.
C.
D.
Chọn D
Xét .
Tập xác định .
Ta có: .
Hàm số đạt cực tiểu tại nên .
Ta có .
Thử lại:
* Với , ta có:
.
.
.
và .
Do đó hàm số hàm số đạt cực tiểu tại .
* Với , ta có:
.
.
.
và .
Do đó hàm số hàm số không đạt cực tiểu tại x=1
Vậy với m= 1, hàm số đạt cực tiểu tại x = 1
tìm tập tất cả các giá trị của tham số m để hàm số y= -1/3x^3-(m-2)x^2+(m-2)x+m luôn nghịch biến trên tập xác định
\(y'=-x^2-2\left(m-2\right)x+m-2\)
Hàm nghịch biến trên TXĐ khi và chỉ khi \(y'\le0;\forall x\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=-1< 0\left(đúng\right)\\\Delta'=\left(m-2\right)^2+m-2\le0\end{matrix}\right.\)
\(\Leftrightarrow\left(m-2\right)\left(m-1\right)\le0\)
\(\Leftrightarrow1\le m\le2\)
Tìm tập hợp tất cả các giá trị thực của tham số m để hàm số y = x 3 - 3 x 2 + ( 2 m - 1 ) x + 2019 đồng biến trên (2;+∞)
A. m ≥ 1 2
B. m < 1 2
C. m = 1 2
D. m ≥ 0