tìm các chữ số a b c thỏa mãn 1/a+1/b+1/c=11/17
tìm các chữ số a b c thỏa mãn 1/a+1/b+1/c=11/17
cho a, b, c là các số thỏa mãn a+b+c=11 và 1/a+b+1/b+c+1/c+a=13/17
Tính A= a/a+b+b/c+a+c/a+b
Ta có: \(\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)=11\cdot\frac{13}{17}\)
\(\Rightarrow\frac{a+b+c}{a+b}+\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}=\frac{143}{17}\)
\(\Rightarrow\frac{a+b}{a+b}+\frac{c}{a+b}+\frac{a}{b+c}+\frac{b+c}{b+c}+\frac{b}{c+a}+\frac{a+c}{c+a}=\frac{143}{17}\)
\(\Rightarrow1+1+1+\frac{c}{a+b}+\frac{a}{b+c}+\frac{b}{c+a}=\frac{143}{17}\)
\(\Rightarrow A=\frac{143}{17}-3=\frac{92}{17}\)
Tìm số tự nhiên M nhỏ nhất có 4 chữ số thỏa mãn : M= a+b=c+d=e+f
Biết rằng a,b,c,d,e,f là các số tự nhiên khác 0 thỏa mãn a/b = 14/22 , c/d = 11/13 , e/f = 13/17
Ta có:
\(\frac{a}{b}=\frac{14}{22}=\frac{14k}{22k}=>a=14k,b=22k=>M=a+b=14k+22k=36k\)
\(\frac{c}{d}=\frac{11}{13}=\frac{11m}{13m}=>c=11m,d=13m=>M=c+d=11m+13m=24m\)
\(\frac{e}{f}=\frac{13}{17}=\frac{13n}{17n}=>e=13n,f=17n=>M=e+f=13n+17n=30n\)
=>M=36k=24m=30n
=>M chia hết cho 36,24,30
Ta thấy: ƯCLN(36,24,30)=360
=>M chia hết cho 360
=>M=360h
mà M là số bé nhất có 4 chữ số=>h bé nhất
=>999<360h
=>2<h
mà h bé nhất
=>h=3
=>M=3.360=1080
Vậy M=1080
$\frac{a}{b}=\frac{14}{22}=\frac{14k}{22k}=>a=14k,b=22k=>M=a+b=14k+22k=36k$
a) cần bao nhiêu số hạng của tổng S=1+2+3+....để được 1 số có 3 chữ số giống nhau
b)tìm mọi số nuyên tố thỏa mãn x^2-2y^2=1
c)tìm số tự nhiên M nn có 4 chữ số thõa mãn đk:
M=a+b=c+d=e+f
biết a,b,c,d,e,f thuộc tập hợp N* và
a/b=14/22
c/d=11/13
e/f=13/17
ai trả lời nhanh nhất mình sẽ k cho càng nhanh cành tốt mình đang cần gấp
Câu 1: Tìm số tự nhiên n thỏa mãn 16 < n < 19 để (n10 + 1)⋮10
A. 19 B. 18 C.17 D. 16
Câu 2. Có bao nhiêu số hữu tỉ x thỏa mãn x11/25 = x9?
A. 1 B. 2 C. 3 D. 4
Câu 3: Có bao nhiêu số hữu tỉ x thỏa mãn xn/8 = 32?
A.1 B. 2 C. 3 D. 4
Tìm các chữ số a,b,c thỏa mãn: \(\frac{1}{\overline{ab}.\overline{bc}}+\frac{1}{\overline{bc}.\overline{ca}}+\frac{1}{\overline{ca}.\overline{ab}}=\frac{11}{3321}\)
Tìm các chữ số a,b,c,d thỏa mãn: 1:0,0abc=a+b+c+d
tìm 3 số a;b;c thỏa mãn: a+b=-1 a+c=11 b+c=2
Ta có :
a + b - 1
a + c = 11
b + c = 2
2a = -1 + 2 - 11 = -10
a = -10 : 2
Tới đây có thể dễ dàng tìm đươc a ; b ; c
Ta có : ( a + b ) + ( a + c ) + ( b + c ) = - 1 + 11 + 2
<=> ( a + a ) + ( b + b ) + ( c + c ) = 12
<=> 2a + 2b + 2c = 12
<=> 2 ( a + b + c ) = 12
=> a + b + c = 6
=> c = ( a + b + c ) - ( a + b ) = 6 - ( - 1 ) = 7
=> b + c = b + 7 = 2 => b = - 5
=> a + b = a + ( - 5 ) = - 1 => a = - 1 + 5 = 4
Vậy a = 4 ; b = - 5 ; c = 7
Kết quả: Giải hệ phương trình
a = 2 và 1 phan 5
b= - 1 phần 5
c=4va 1 phần 5
1. Cho các số thực không âm \(a;b;c\) (không có hai số nào đồng thời bằng 0) thỏa mãn \(a+b+c \leq 3\)
Tìm giá trị nhỏ nhất: \(A=\dfrac{1}{a^2+b^2}+\dfrac{1}{b^2+c^2}+\dfrac{1}{c^2+a^2}\)
2. Cho các số thực \(a;b;c \in [0;1]\) thỏa mãn \(a+b+c=2\), tìm giá trị lớn nhất và nhỏ nhất của:
\(B=\dfrac{ab}{1+ab}+\dfrac{bc}{1+bc}+\dfrac{ca}{1+ca}\)
Thank you all :)
1.
Ta sẽ chứng minh BĐT sau: \(\dfrac{1}{a^2+b^2}+\dfrac{1}{b^2+c^2}+\dfrac{1}{c^2+a^2}\ge\dfrac{10}{\left(a+b+c\right)^2}\)
Do vai trò a;b;c như nhau, ko mất tính tổng quát, giả sử \(c=min\left\{a;b;c\right\}\)
Đặt \(\left\{{}\begin{matrix}x=a+\dfrac{c}{2}\\y=b+\dfrac{c}{2}\end{matrix}\right.\) \(\Rightarrow x+y=a+b+c\)
Đồng thời \(b^2+c^2=\left(b+\dfrac{c}{2}\right)^2+\dfrac{c\left(3c-4b\right)}{4}\le\left(b+\dfrac{c}{2}\right)^2=y^2\)
Tương tự: \(a^2+c^2\le x^2\) ; \(a^2+b^2\le x^2+y^2\)
Do đó: \(A\ge\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{x^2+y^2}\)
Nên ta chỉ cần chứng minh: \(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{x^2+y^2}\ge\dfrac{10}{\left(x+y\right)^2}\)
Mà \(\dfrac{1}{\left(x+y\right)^2}\le\dfrac{1}{4xy}\) nên ta chỉ cần chứng minh:
\(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{x^2+y^2}\ge\dfrac{5}{2xy}\)
\(\Leftrightarrow\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{2}{xy}+\dfrac{1}{x^2+y^2}-\dfrac{1}{2xy}\ge0\)
\(\Leftrightarrow\dfrac{\left(x-y\right)^2}{x^2y^2}-\dfrac{\left(x-y\right)^2}{2xy\left(x^2+y^2\right)}\ge0\)
\(\Leftrightarrow\dfrac{\left(x-y\right)^2\left(2x^2+2y^2-xy\right)}{2x^2y^2}\ge0\) (luôn đúng)
Vậy \(A\ge\dfrac{10}{\left(a+b+c\right)^2}\ge\dfrac{10}{3^2}=\dfrac{10}{9}\)
Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(\dfrac{3}{2};\dfrac{3}{2};0\right)\) và các hoán vị của chúng
2.
Ta có: \(B=\dfrac{ab+1-1}{1+ab}+\dfrac{bc+1-1}{1+bc}+\dfrac{ca+1-1}{1+ca}\)
\(B=3-\left(\dfrac{1}{1+ab}+\dfrac{1}{1+ca}+\dfrac{1}{1+ab}\right)\)
Đặt \(C=\dfrac{1}{1+ab}+\dfrac{1}{1+bc}+\dfrac{1}{1+ca}\)
Ta có: \(C\ge\dfrac{9}{3+ab+bc+ca}\ge\dfrac{9}{3+\dfrac{1}{3}\left(a+b+c\right)^2}=\dfrac{27}{13}\)
\(\Rightarrow B\le3-\dfrac{27}{13}=\dfrac{12}{13}\)
\(B_{max}=\dfrac{12}{13}\) khi \(a=b=c=\dfrac{2}{3}\)
Do \(a;b;c\in\left[0;1\right]\)
\(\Rightarrow\left(a-1\right)\left(b-1\right)\ge0\)\(\Leftrightarrow ab+1\ge a+b\)
\(\Leftrightarrow ab+c+1\ge a+b+c=2\)
\(\Rightarrow abc+ab+c+1\ge ab+c+1\ge2\)
\(\Rightarrow\left(c+1\right)\left(ab+1\right)\ge2\)
\(\Rightarrow\dfrac{1}{ab+1}\le\dfrac{c+1}{2}\)
Hoàn toàn tương tự, ta có:
\(\dfrac{1}{bc+1}\le\dfrac{a+1}{2}\) ; \(\dfrac{1}{ca+1}\le\dfrac{b+1}{2}\)
Cộng vế: \(C\le\dfrac{a+b+c+3}{2}=\dfrac{5}{2}\)
\(\Rightarrow B\ge3-\dfrac{5}{2}=\dfrac{1}{2}\)
\(B_{min}=\dfrac{1}{2}\) khi \(\left(a;b;c\right)=\left(0;1;1\right)\) và các hoán vị của chúng