Tính tổng: S= 1/2+1/4+ 1/8+ 1/16+1/32+1/64+1/128
Tính tổng:
1/2+1/4+1/8+1/16+1/32+1/64+1/128
Đặt \(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\)
\(\Rightarrow2A=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}\)
\(\Rightarrow2A-A=1-\frac{1}{128}=\frac{127}{128}\)
tính nhanh p/s 1+ 5/4 + 5/8 + 5/16 + 5/32 + 5/64
b) 1/3 +1/9 + 1/27 + 1/81 +...........+ 1/59049
c) 3/2 + 3/8 + 3/32 +3/128 + 3/512
d) 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 + 1/256 giúp mình với ![]()
![]()
b: A=1/3+1/9+...+1/3^10
=>3A=1+1/3+...+1/3^9
=>A*2=1-1/3^10=(3^10-1)/3^10
=>A=(3^10-1)/(2*3^10)
c: C=3/2+3/8+3/32+3/128+3/512
=>4C=6+3/2+...+3/128
=>3C=6-3/512
=>C=1023/512
d: A=1/2+...+1/256
=>2A=1+1/2+...+1/128
=>A=1-1/256=255/256
Tính nhanh tổng sau:
1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 + 1/256 + 1/512 + 1/1024
bằng 0,9990234375
Tính tổng S=1/2+3/4+7/8+15/16+31/32+63/64+127/128-6
Ta có :
\(S=\left(\frac{1}{2}+\frac{3}{4}+\frac{7}{8}+\frac{15}{16}+\frac{31}{32}+\frac{63}{64}+\frac{127}{128}\right)-6\)
\(S=\left(\frac{64}{128}+\frac{102}{128}+\frac{112}{128}+\frac{120}{128}+\frac{124}{128}+\frac{126}{128}+\frac{127}{128}\right)-6\)
\(S=\frac{64+102+112+120+124+126+127}{128}-6\)
\(S=\frac{775}{128}-6\)
\(S=\frac{775}{128}-\frac{768}{128}\)
\(S=\frac{7}{128}\)
S=1/2+3/4+7/8+15/16+31/32+63/64+127/128 -6
S= 1-1/2 + 1-1/4 + 1-1/8 + 1-1/16 + 1-1/32 + 1-1/64+ 1-1/128 - 6
S= (1+1+1+1+1+1+1-6)- (1/2+1/4+1/8+1/16 + 1/32+1/64+1/128)
S= 1- 111/128
S= 17/128
(Làm lụi nha bn)
S=1/128
-Học tốt-
#TLQA
tính tổng dưới đây bằng cách nhanh nhất:
1/2+1/4+1/8+1/16+1/32+1/64+1/128+1/256+1/512+1/1204
bằng 511/512
Tính tổng 1 + 4 + 8 + 16 + 32 + 64 + 128.
tổng 1 + 4 + 8 + 16 + 32 + 64 + 128 là : 253
100% đúng
S=1/4+1/8+1/16+1/32+1/64+1/128
S=1/4+1/8+1/16+1/32+1/64+1/128
\(S=\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^7}\)
\(2S=2\left(\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^7}\right)\)
\(2S=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^6}\)
\(2S-S=\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^6}\right)-\left(\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^7}\right)\)
\(S=\frac{1}{2}-\frac{1}{2^7}\)
S=(1/2-1/4)+(1/4-1/8)+(1/8-1/16)+(1/16-1/32)+(1/32-1/64)+(1/64-1/128)
S=1/2-1/4+1/4-1/8+1/8-1/16+1/16-1/32+1/32-1/64+1/64-1/128
S=1/2-(1/4-1/4)+(1/8-1/8)+(1/16-1/16)+(1/32-1/32)+(1/64-1/64)-1/128
S=1/2-1/128
S=63/128
Tính tổng của dãy số sau:
a) 49 + 51 + 53 +...+ 97 + 99
b) 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128
a) Số các số hạng là:
( 99-49):2+1\(=\)26 ( số )
Tổng của dãy số trên là:
( 99 + 49 ) x 26 : 2 \(=\)1924
Đáp số: 1924
b) \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+\frac{1}{8}-\frac{1}{16}+\frac{1}{16}-\frac{1}{32}+\frac{1}{32}-\frac{1}{64}+\frac{1}{64}-\frac{1}{128}\)
\(=\frac{1}{1}-\frac{1}{128}\)
\(=\frac{127}{128}\)
a) Số các số hạng là (99 - 49) : 2 + 1 = 26 số
Tổng của dãy trên là:
(99 + 49) x 26 : 2 = 1924
Đáp số : 1924
b) 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128
= 1/1 - 1/2 + 1/2 - 1/4 + 1/4 - 1/8 + 1/8 - 1/16 + 1/16 - 1/32 + 1/32 - 1/64 + 1/64 - 1/128
= 1/1 - 1/128
= 127/128
a) GIẢI:
Số số hạng dãy số là:
(99-49):2+1=26
Tổng dãy số là:
(49+99)x26:2=1924
Vậy tổng dãy số là 1924
Đáp số : 1924
S=1/2+1/4+1/8+1/16+1/32+1/64+1/128+1/256
hỏi S bằng bao nhiêu ?
1/2 + 1/4+ 1/8+ 1/16 + 1/32 + 1/64 + 1/128 + 1/256 + 1/512
= 1 – 1/2 + 1/2- 1/4 + 1/4 – 1/8 + 1/8 – 1/16 + 1/16 – 1/32 + 1/32 – 1/64 + 1/64 – 1/128 + 1/128 – 1/256 – 1/256 – 1/512
= 1 – 1/512
= 511/512