Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyen Khanh Linh
Xem chi tiết
Kiều Thu Lan
Xem chi tiết
Nguyễn Tũn
28 tháng 7 2018 lúc 15:57

tích mình đi

ai tích mình

mình ko tích lại đâu

thanks

oOo Sát thủ bóng đêm oOo
28 tháng 7 2018 lúc 15:57

tích mình đi

ai tích mình 

mình tích lại 

thanks

Đào Trần Tuấn Anh
28 tháng 7 2018 lúc 15:59

hs minh

Thom tran thi
Xem chi tiết
Thom tran thi
22 tháng 4 2016 lúc 17:43

ai làm có thưởng 2điem

Thảo Vân
Xem chi tiết
kuroba kaito
26 tháng 1 2018 lúc 21:54

a.x(y+3)=3

=> x(y+3) ∈Ư(3)={-3;-1;1;3}

ta có bảng sau

x -3 -1 1 3
y+3 -1 -3 3 1
y -4 -6 0 -2

vậy x=-3 thì y=-4

x=-1 thì y=-6

x=1 thì y=0

x=3 thì y=-2

c.x+3⋮ x+1

=> (x+3)-(x+1)⋮(x+1)

=> (x+3-x-1)⋮(x+1)

=> 2⋮(x+1)

=> (x+1) ∈ Ư(2)={-2;-1;1;2}

=> x∈{-3;-2;0;1}

vậy x ∈{-3;-2;0;1}

b,d tương tự

kuroba kaito
26 tháng 1 2018 lúc 15:04

a.(x-2)(x+3)>0

=>\(\left[{}\begin{matrix}x-2>0\\x+3>0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x>2\\x>-3\end{matrix}\right.\)

=> x>2

vậy x>2

b.(x-2)(x-1)>0

=> \(\left[{}\begin{matrix}x-2>0\\x-1>0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x>2\\x>1\end{matrix}\right.\)

=> x>2

vậy x>2

c.(x-2)(x2+1)>0

=> \(\left[{}\begin{matrix}x-2>0\\x^2+1>0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x>2\\x^2>-1\Rightarrow x>\sqrt{-1}\end{matrix}\right.\)

vậy x>2

d.(x-1)(x+2)>0

=> \(\left[{}\begin{matrix}x-1>0\\x+2>0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x>1\\x>-2\end{matrix}\right.\)

=> x>1

vậy x>1

Thảo Vân
29 tháng 1 2018 lúc 19:50

Còn câu này nx bn ạ:

x^2.(x+2)<0

Tìm x

Giúp mk nhanh nha, mk cần gấp

công chúa bong bóng
Xem chi tiết
phung thi  khanh hop
23 tháng 1 2016 lúc 18:10

cậu chia từng câu ra cho mình nhé

Trịnh Thị Việt Hà
Xem chi tiết
Minh Nguyen
29 tháng 3 2020 lúc 14:28

Từ giải thiết, ta suy ra được những điều sau :

\(\frac{x}{y^3-1}-\frac{y}{x^3-1}=\frac{x}{\left(y-1\right)\left(y^2+y+1\right)}-\frac{y}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\frac{x}{\left[y-\left(x+y\right)\right]\left(y^2+y+1\right)}-\frac{y}{\left[x-\left(x+y\right)\right]\left(x^2+x+1\right)}\)

\(=\frac{x}{-x\left(y^2+y+1\right)}-\frac{y}{-y\left(x^2+x+1\right)}\)

\(=\frac{-1}{y^2+y+1}+\frac{1}{x^2+x+1}\)      (1)

Và \(\left(x^2+x+1\right)\left(y^2+y+1\right)\) 

\(=x^2y^2+x^2y+x^2+xy^2+xy+x+y^2+y+1\)

\(=x^2y^2+\left(x^2+xy\left(x+y\right)+xy+y^2\right)+\left(x+y\right)+1\)

\(=x^2y^2+\left(x^2+2xy+y^2\right)+1+1\)

\(=x^2y^2+\left(x+y\right)^2+2\)

\(=x^2y^2+3\)   (2)

Từ (1) và (2) suy ra :

\(\frac{x}{y^3-1}-\frac{y}{x^3-1}+\frac{2\left(x-y\right)}{x^2y^2+3}\)

\(=\frac{-1}{y^2+y+1}+\frac{1}{x^2+x+1}+\frac{2\left(x-y\right)}{\left(y^2+y+1\right)\left(x^2+x+1\right)}\)

\(=\frac{-x^2-x-1+y^2+y+1+2x-2y}{\left(y^2+y+1\right)\left(x^2+x+1\right)}\)

\(=\frac{-x^2+y^2+x-y}{\left(y^2+y+1\right)\left(x^2+x+1\right)}\)

\(=\frac{\left(x+y\right)\left(y-x\right)+x-y}{\left(y^2+y+1\right)\left(x^2+x+1\right)}\)

\(=\frac{y-x+x-y}{\left(y^2+y+1\right)\left(x^2+x+1\right)}\)

\(=0\)(ĐPCM)

Khách vãng lai đã xóa
Tran Le Khanh Linh
7 tháng 4 2020 lúc 6:09

Biến đổi

\(\frac{x}{y^3-1}-\frac{y}{x^3-1}=\frac{x^4-x-y^4+y}{\left(x^3-1\right)\left(y^3-1\right)}=\frac{\left(x^4-y^4\right)-\left(x-y\right)}{xy\left(y^2+y+1\right)\left(x^2+x+1\right)}\)

(do x+y=1 => y-1=-x và x-1=-y)

\(=\frac{\left(x-y\right)\left(x+y\right)\left(x^3+y^3\right)-\left(x-y\right)}{xy\left(x^2y^2+y^2x+y^2+yx^2+xy+y+x^2+x+1\right)}\)

\(=\frac{\left(x-y\right)\left(x^2+y^2-1\right)}{xy\left[x^2y^2+xy\left(x+y\right)+x^2+y^2+xy+2\right]}\)

\(=\frac{\left(x-y\right)\left(x^2-x+y^2-y\right)}{xy\left[x^2y^2+\left(x+y\right)^2+2\right]}=\frac{\left(x-y\right)\left[x\left(x-1\right)+y\left(y-1\right)\right]}{xy\left(x^2y^2+3\right)}\)

\(=\frac{\left(x-y\right)\left[x\left(-y\right)+y\left(-x\right)\right]}{xy\left(x^2y^2+3\right)}=\frac{\left(x-y\right)\left(-2xy\right)}{xy\left(x^2y^2+1\right)}=\frac{-2\left(x-y\right)}{x^2y^2+3}\)

=> ĐPCM

Khách vãng lai đã xóa
Ngọc Anhh
Xem chi tiết
Thắng Nguyễn
9 tháng 3 2016 lúc 18:46

bài 1: x.(x+7) = 0

Th1:x=0              Th2:x+7=0

                          =>x=-7

bài 2 (x+12).(x-3)= 0

Th1:x+12=0                                         Th2:x-3=0

=>x=-12                                                =>x=3

bài 3 (-x+5).(3-x)=0

Th1 (-x)+5=0                                          Th2:3-x=0

=>-x=-5                                                  =>x=3

bài 4 x.(2+x).(7-x)=0

Th1:x=0                                               Th3:7-x=0

Th2:2+x=0                                             =>x=7

=>x=-2

bài 5 (x-1).(x+2).(-x-3)=0

Th1:x-1=0                                               Th2:x+2=0

=>x=1                                                   =>x=-2

Th3:-x-3=0

=>-x=-3


 

Bình Thiên
Xem chi tiết
Phan Thanh Binh
Xem chi tiết
Nguyễn Quỳnh Chi
Xem chi tiết
Nguyễn Quỳnh Chi
17 tháng 6 2016 lúc 20:48

Trả lời nhanh nha các bn, mik đang cần gấp, cảm ơn nhiều.

Phước Nguyễn
17 tháng 6 2016 lúc 21:15

Kết hợp với giả thiết nêu ra ở đề bài, ta có vài biến đổi sau: 

\(\frac{x}{y^3-1}=\frac{x}{\left(y-1\right)\left(y^2+y+1\right)}=\frac{x}{\left[y-\left(x+y\right)\right]\left(y^2+y+1\right)}=-\frac{1}{y^2+y+1}\)  \(\left(1\right)\)

\(\frac{y}{x^3-1}=\frac{y}{\left(x-1\right)\left(x^2+x+1\right)}=\frac{y}{\left[x-\left(x+y\right)\right]\left(x^2+x+1\right)}=-\frac{1}{x^2+x+1}\)  \(\left(2\right)\)

Mặt khác, ta lại có: \(\left(x^2+x+1\right)\left(y^2+y+1\right)=x^2y^2+xy^2+y^2+x^2y+xy+y+x^2+x+1\)

\(=x^2y^2+\left[x^2+xy\left(x+y\right)+xy+y^2\right]+\left(x+y\right)+1=x^2y^2+\left(x+y\right)^2+2=x^2y^2+3\)

Khi đó,  trừ đẳng thức  \(\left(1\right)\)  cho  đẳng thức  \(\left(2\right)\)  vế theo vế, ta được:

\(\frac{x}{y^3-1}-\frac{y}{x^3-1}=\frac{1}{x^2+x+1}-\frac{1}{y^2+y+1}=\frac{\left(y-x\right)\left(x+y+1\right)}{\left(x^2+x+1\right)\left(y^2+y+1\right)}=\frac{-2\left(x-y\right)}{x^2y^2+3}\)

Vậy,  \(\frac{x}{y^3-1}-\frac{y}{x^3-1}+\frac{2\left(x-y\right)}{x^2y^2+3}=-\frac{2\left(x-y\right)}{x^2y^2+3}+\frac{2\left(x-y\right)}{x^2y^2+3}=0\)

Cô Long_Nghiên Hy Trần
30 tháng 7 2016 lúc 22:42

Tỷ ơi níu đệ bít thì đệ chết lun