Cho mặt cầu S : x 2 + y 2 + z 2 + 4 x - 2 y + 1 = m ( 1 ) . Xác định m để (S) là phương trình mặt cầu có bán kính R = 3
Cho mặt cầu (S):x^2+y^2+z^2+x-2y+4z-3=0.Xác định tọa độ tâm I của mặt cầu.
Mặt cầu tâm \(I\left(-\dfrac{1}{2};1;-2\right)\)
Trong không gian Oxyz, cho mặt cầu ( S ) : ( x + 2 ) 2 + ( y + 1 ) 2 + ( z - 1 ) 2 = 12 . Mặt phẳng nào sau đây cắt mặt cầu (S) theo giao tuyến là một đường tròn?
A. ( P 1 ) : x + y - z + 2 = 0
B. ( P 2 ) : x + y - z - 2 = 0
C. ( P 3 ) : x + y - z + 10 = 0
D. ( P 4 ) : x + y - z - 10 = 0
Trong không gian Oxyz, cho mặt cầu ( S ) : ( x + 2 ) 2 + ( y + 1 ) 2 + ( z - 1 ) 2 = 12 . Mặt phẳng nào sau đây cắt mặt cầu (S) theo giao tuyến là một đường tròn?
Trong không gian Oxyz, cho mặt cầu ( S ) : ( x + 1 ) 2 + ( y - 2 ) 2 + ( z - 1 ) 2 = 9 . Tìm tọa độ tâm I và bán kính R của mặt cầu (S).
A. I(-1;2;1), R=9
B. I(1;-2;-1), R=9
C. I(1;-2;-1), R=3
D. I(-1;2;1), R=3
Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu ( S ) : ( x - 5 ) 2 + ( y - 1 ) 2 + ( z + 2 ) 2 = 9 . Bán kính R của mặt cầu (S) là
A. 3
B. 6
C. 9
D. 18
Trong không gian Oxyz, cho mặt cầu (S): ( x + 3 ) 2 + ( y + 1 ) 2 + ( z - 1 ) 2 = 2 . Xác định tọa độ tâm của mặt cầu
A. I(-3;1;-1)
B. I(3;1;-1)
C. I(-3;-1;1)
D. I(3;-1;1)
Trong không gian Oxyz, cho hai đường thẳng △ 1 : x - 4 3 = y - 1 - 1 = z + 5 - 2 và △ 2 : x - 2 = y + 3 = z 1 Trong tất cả các mặt cầu tiếp xúc với cả hai đường thẳng △ 1 và △ 2 Gọi (S) là mặt cầu có bán kính nhỏ nhất. Bán kính của mặt cầu (S) là
A. 12
B. 6
C. 24
D. 3
Trong không gian Oxyz, cho mặt cầu (S) có phương trình là:
( x - 1 ) 2 + ( y + 2 ) 2 + ( z + 3 ) 2 = 25
Tìm tọa độ tâm I và bán kính R của mặt cầu (S)
A. I(1; -2; -3); R = 25
B. I(-1; 2; 3); R = 5
C. I(-1; 2; 3); R = 25
D. I(1; -2; -3); R = 5
Trong không gian Oxyz, cho mặt cầu (S): ( x + 1 ) 2 + ( y - 1 ) 2 + ( z - 2 ) 2 = 9 và mặt phẳng (P): 2x-2y+z+14=0. Gọi M ( a ; b ; c ) là điểm thuộc mặt cầu (S) sao cho khoảng cách từ M đến mặt phẳng (P) lớn nhất. Tính T = a + b + c .
Trong không gian Oxyz cho mặt cầu ( S ) : ( x - 1 ) 2 + ( y + 2 ) 2 + ( z - 2 ) 2 = 4 và mặt phẳng (P): x-y+2z-1=0 Gọi M là một điểm bất kì trên mặt cầu (S) Khoảng cách từ M đến (P) có giá trị nhỏ nhất bằng