Trong không gian Oxyz, cho hai đường thẳng ∆ 1 : x - 4 3 = y - 1 - 1 = z + 5 - 2 và ∆ 2 : x - 2 1 = y + 3 3 = z 1 . Trong tất cả mặt cầu tiếp xúc với cả hai đường thẳng ∆ 1 và ∆ 2 . Gọi (S) là mặt cầu có bán kính nhỏ nhất. Bán kính của mặt cầu (S) là
A. 12
B. 6
C. 24
D. 3
Trong không gian Oxyz cho hai đường thẳng ∆ 1 : x = 1 y = 2 + t z = - t , ∆ 2 : x = 4 + t y = 3 - 2 t z = 1 - t .Gọi (S) là mặt cầu có bán kính nhỏ nhất tiếp xúc với cả hai đường thẳng Δ1 và Δ2. Bán kính mặt cầu (S).
A . 10 2
B . 11 2
C. 3/2
D. 2
Trong không gian Oxyz, cho mặt cầu (S): ( x + 1 ) 2 + ( y - 1 ) 2 + ( z + 2 ) 2 = 3 và hai đường thẳng d x : x - 2 1 = y 2 = z - 1 - 1 ; △ : x 1 = y 1 = z - 1 - 1 Phương trình nào dưới đây là phương trình mặt phẳng cắt mặt cầu (S) theo giao tuyến là một đường tròn (C) có bán kính bằng 1 và song song với d và △ .
Trong không gian Oxyz, cho biết có hai mặt cầu có tâm nằm trên đường thẳng d: x 2 = y - 1 1 = z + 2 - 1 , tiếp xúc đồng thời với 2 mặt phẳng: ( α ) : x+2y-2z+1=0 và ( β ) : 2x-3y-6z-2=0. Gọi R 1 , R 2 ( R 1 > R 2 ) là bán kính 2 mặt cầu đó. Tỉ số R 1 R 2 bằng
A. 2
B. 3
C. 2
D. 4
Trong không gian với hệ tọa độ Oxyz, cho điểm A(1;-2;3) và đường thẳng d có phương trình x + 1 2 = y - 2 1 = z + 3 - 1 Tính bán kính của mặt cầu (S) có tâm A và tiếp xúc với đường thẳng d
Trong không gian Oxyz cho mặt cầu (S): (x-3)²+ (y-1)²+z² = 4 và đường thẳng d : x = 1 + 2 t y = - 1 + t , t ∈ ℝ z = - t . Mặt phẳng chứa d và cắt (S) theo một đường tròn có bán kính nhỏ nhất có phương trình là:
A. 3x-2y-4z-8=0
B. y+z+1=0
C. x-2y-3=0
D. x+3y+5z+2=0
Trong không gian Oxyz, cho mặt cầu (S): (x-1)²+ (y-2)²+ (z-3)²=25 và hai điểm A (3;-2;6), B (0;1;0). Mặt phẳng (P):ax+by+cz-2=0 chứa đường thẳng AB và cắt (S) theo giao tuyến là đường tròn có bán kính nhỏ nhất. Tính giá trị của biểu thức M=2a+b-c.
A. M=2.
B. M=3.
C. M=1.
D. M=4.
Trong không gian Oxyz, cho đường thẳng và mặt phẳng (P): 2x - y + 2z = 0. Cho mặt cầu (S) có tâm I thuộc đường thẳng d, có bán kính bằng 1 và tiếp xúc với mặt phẳng (P). Tọa độ tất cả các điểm I có thể là:
A. I 1 (5; 11; 2)
B. I 2 (3; 7; 1)
C. I 2 (3; 7; 1) hoặc I 3 (-3; -5; -2)
D. I 1 (5; 11; 2) hoặc I 4 (-1; -1; -1)
Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng chéo nhau
d 1 : x = 4 - 2 t y = t z = 3 , d 2 : x = 1 y = t ' z = - t '
Phương trình mặt cầu có bán kính nhỏ nhất tiếp xúc với cả hai đường thẳng trên là: