Mặt cầu có bán kính nhỏ nhất tiếp xúc với cả hai đường thẳng Δ1 và Δ2 có đường kính bằng độ dài đoạn AB nên có bán kính r = AB/2 = √11/2
Mặt cầu có bán kính nhỏ nhất tiếp xúc với cả hai đường thẳng Δ1 và Δ2 có đường kính bằng độ dài đoạn AB nên có bán kính r = AB/2 = √11/2
Trong không gian Oxyz, cho hai đường thẳng △ 1 : x - 4 3 = y - 1 - 1 = z + 5 - 2 và △ 2 : x - 2 = y + 3 = z 1 Trong tất cả các mặt cầu tiếp xúc với cả hai đường thẳng △ 1 và △ 2 Gọi (S) là mặt cầu có bán kính nhỏ nhất. Bán kính của mặt cầu (S) là
A. 12
B. 6
C. 24
D. 3
Trong không gian Oxyz, cho hai đường thẳng ∆ 1 : x - 4 3 = y - 1 - 1 = z + 5 - 2 và ∆ 2 : x - 2 1 = y + 3 3 = z 1 . Trong tất cả mặt cầu tiếp xúc với cả hai đường thẳng ∆ 1 và ∆ 2 . Gọi (S) là mặt cầu có bán kính nhỏ nhất. Bán kính của mặt cầu (S) là
A. 12
B. 6
C. 24
D. 3
Trong không gian Oxyz cho mặt cầu (S): (x-3)²+ (y-1)²+z² = 4 và đường thẳng d : x = 1 + 2 t y = - 1 + t , t ∈ ℝ z = - t . Mặt phẳng chứa d và cắt (S) theo một đường tròn có bán kính nhỏ nhất có phương trình là:
A. 3x-2y-4z-8=0
B. y+z+1=0
C. x-2y-3=0
D. x+3y+5z+2=0
Trong không gian Oxyz cho mặt cầu (S): x 2 + y 2 + z 2 − 2 x + 4 y − 16 = 0 và hai đường thẳng Δ 1 : x − 1 2 = y + 4 − 3 = z 2 và Δ 2 : x + 1 1 = y − 2 1 = z − 1 − 1 .Viết phương trình mặt phẳng α song song với Δ 1 , Δ 2 , tiếp xúc với mặt cầu (S) và cắt trục Oz tại điểm có cao độ dương
A. x − 4 y + 5 z − 7 − 21 2 = 0
B. x − 4 y + 5 z + 7 − 21 2 = 0
C. x + 4 y + 5 z − 7 − 21 2 = 0
D. x + 4 y + 5 z + 7 − 21 2 = 0
Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng chéo nhau
d 1 : x = 4 - 2 t y = t z = 3 , d 2 : x = 1 y = t ' z = - t '
Phương trình mặt cầu có bán kính nhỏ nhất tiếp xúc với cả hai đường thẳng trên là:
Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng ∆ 1 : x + 1 3 = y - 2 1 = z - 1 2 và ∆ 2 : x - 1 1 = y 2 = z + 1 3 . Phương trình đường thẳng ∆ song song với d : x = 3 y = - 1 + t z = 4 + t và cắt hai đường thẳng Δ1; Δ2 là:
A. x = 2 y = 3 - t z = 3 - t
B. x = - 2 y = - 3 - t z = - 3 - t
C. x = - 2 y = - 3 + t z = - 3 + t
D. x = 2 y = - 3 + t z = 3 + t
Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng ∆ 1 : x + 1 3 = y - 2 1 = z - 1 2 và ∆ 2 : x - 1 1 = y 2 = z + 1 3 . Phương trình đường thẳng ∆ song song với d : x = 3 y = - 1 + t z = 4 + t và cắt hai đường thẳng Δ1; Δ2 là:
A. x = 2 y = 3 - t z = 3 - t
B. x = - 2 y = - 3 - t z = - 3 - t
C. x = - 2 y = - 3 + t z = - 3 + t
D. x = 2 y = - 3 + t z = 3 + t
Trong không gian với hệ tọa độ Oxyz cho hai điểm A(3;-2;6),B(0;1;0) và mặt cầu (S): ( x - 1 ) 2 + ( y - 2 ) 2 + ( z - 3 ) 2 = 25 . Mặt phẳng (P): ax+by+cz-2=0 đi qua A và B và cắt (S) theo giao tuyến là đường tròn có bán kính nhỏ nhất. Tính T=a+b+c
A. T=3
B. T=5
C. T=2
D. T=4
Trong không gian Oxyz, cho biết có hai mặt cầu có tâm nằm trên đường thẳng d: x 2 = y - 1 1 = z + 2 - 1 , tiếp xúc đồng thời với 2 mặt phẳng: ( α ) : x+2y-2z+1=0 và ( β ) : 2x-3y-6z-2=0. Gọi R 1 , R 2 ( R 1 > R 2 ) là bán kính 2 mặt cầu đó. Tỉ số R 1 R 2 bằng
A. 2
B. 3
C. 2
D. 4