Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
27 tháng 4 2018 lúc 11:37

Đáp án D

Số tam giác tạo thành khi chọn ngẫu nhiên 3 điểm là:  C 2 n 3

Số đường chéo đi qua tâm là n => số hình chữ nhật nhận 2 đường chéo đi qua tâm làm 2 đường chéo là:  C n 2 .

Số tam giác vuông được tạo thành là:  4 . C n 2 .

Ta có:  4 C n 2 C 2 n 3 = 1 5 ⇒ n = 1 8 .

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
27 tháng 12 2017 lúc 15:01

Gọi A là biến cố để 3 đỉnh tạo thành một tam giác vuông.

Ta có một đa giác đều 2n cạnh có n đường chéo đi qua tâm.

Ta lấy hai đường chéo thì tạo thành một hình chữ nhật.

Mỗi một hình chữ nhật sẽ có bốn tam giác vuông.

Vậy số tam giác vuông tạo thành từ đa giác đều 2n đỉnh là

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
3 tháng 11 2019 lúc 8:30

Đáp án B

Đa giác đều 2n đỉnh có n đường chéo qua tâm. Cứ 2 đường chéo qua tâm tương ứng với 1 hình chữ nhật  ⇒   C n 2   =   45   ⇔ n   =   10

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
28 tháng 7 2017 lúc 5:28

Đáp án B

Đa giác đều 2n đỉnh có n đường chéo qua tâm. Cứ 2 đường chéo qua tâm tương ứng với 1 hình chữ nhật  \Rightarrow C_n^2 = 45 \Leftrightarrow n = 10

 \Rightarrow C_n^2 = 45 \Leftrightarrow n = 10

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
2 tháng 9 2017 lúc 11:01

Đáp án D

Đa giác đều 2n đỉnh có n đường chéo qua tâm. Cứ 2 đường chéo qua tâm tương ứng với 1 hình chữ nhật có 4 đỉnh là đỉnh của đa giác. Do đó số hình chữ nhật là  C n 2

Đặng Gia Ân
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
6 tháng 10 2019 lúc 7:25

vu viet anh
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
2 tháng 3 2017 lúc 15:51

Đáp án C

Gọi  A  là biến cố: “Chọn được tam giác vuông”

Đa giác đều 4n đỉnh nội tiếp trong đường tròn tâm  O có 2n đường chéo qua tâm  O .

Mỗi tam giác vuông tạo bởi hai đỉnh nằm trên cùng một đường chéo qua tâm  O  và một đỉnh trong  4 n   - 2   đỉnh còn lại.

Suy ra số tam giác vuông được tạo thành là  C 2 n 1 . C 4 n - 2 1 .