Đáp án B
Đa giác đều 2n đỉnh có n đường chéo qua tâm. Cứ 2 đường chéo qua tâm tương ứng với 1 hình chữ nhật ⇒ C n 2 = 45 ⇔ n = 10
Đáp án B
Đa giác đều 2n đỉnh có n đường chéo qua tâm. Cứ 2 đường chéo qua tâm tương ứng với 1 hình chữ nhật ⇒ C n 2 = 45 ⇔ n = 10
Cho một đa giác đều gồm 2n đỉnh ( n ≥ 2 , n ∈ ℕ ) . Chọn ngẫu nhiên ba đỉnh trong số 2n đỉnh của đa giác, xác suất ba đỉnh được chọn tạo thành một tam giác vuông là 1 5 . Tìm n.
A. n = 5
B. n = 4
C. n = 10
D. n = 8
Cho đa giác đều A1A2…A2n nội tiếp trong đường tròn tâm O. Biết rằng số tam giác có đỉnh là 3 trong 2n điểm A1;A2;…;A2n gấp 20 lần so với số hình chữ nhật có đỉnh là 4 trong 2n điểm A1;A2;…;A2n . Tìm n?
A. 3
B. 6
C.8
D.12
Cho một đa giác đều n đỉnh, n ∈ N , n ⩾ 3 Tìm n biết rằng đa giác đã cho có 27 đường chéo.
Cho đa giác đều n đỉnh, n ∈ N và n ≥ 3 . Tìm n biết rằng đa giác đã cho có 135 đường chéo
A. n = 15
B. n = 27
C. n = 8
D. n = 18
Cho đa giác đều n đỉnh, n ∈ N và n ≥ 3 Tìm n biết rằng đa giác đã cho có 135 đường chéo.
A. n= 15
B.n = 27
C.n = 8
D.n = 18
Cho đa giác (H) có n đỉnh ( n ∈ ℕ , n > 4 ) . Biết số các tam giác có 3 đỉnh là đỉnh của (H) và không có cạnh nào là cạnh của (H) gấp 5 lần số các tam giác có 3 đỉnh là đỉnh của (H) và có đúng 1 cạnh là cạnh của (H). Khẳng định nào sau đây đúng?
A. n ∈ 4 ; 12
B. n ∈ 13 ; 21
C. n ∈ 22 ; 30
D. n ∈ 31 ; 38
Cho một đa giác đều 20 đỉnh nội tiếp trong đường tròn O. Chọn ngẫu nhiên 4 đỉnh của đa giác đó. Tính xác suất sao cho 4 đỉnh được chọn là 4 đỉnh của một hình chữ nhật
A. 3 323
B. 4 9
C. 2 969
D. 7 216
Cho một đa giác đều 20 đỉnh nội tiếp trong đường tròn O. Chọn ngẫu nhiên 4 đỉnh của đa giác đó. Tính xác suất sao cho 4 đỉnh được chọn là 4 đỉnh của một hình chữ nhật?
A.
B.
C.
D.
Gọi là đa giác đều 4n đỉnh nội tiếp trong đường tròn tâm O n ∈ ℕ * và X là tập hợp các tam giác có ba đỉnh là các đỉnh của đa giác. Chọn ngẫu nhiên một tam giác thuộc tập X. Biết rằng xác suất chọn được một tam giác vuông thuộc tập X là 1 13 . Giá trị của n là
A. 9.
B. 14.
C. 10.
D. 12.