1+1-1+1-1+1-1+1-1+1-1+1-1+1+1-1x2
1/1x2+1/2x3+1/3x4+1/24x25
1/1x2+ 1/2x3+1/3x4+1/24x25
\(\dfrac{1}{1\times2}+\dfrac{1}{2\times3}+\dfrac{1}{3\times4}+....+\dfrac{1}{24\times25}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{24}-\dfrac{1}{25}\)
\(=1-\dfrac{1}{25}\)
\(=\dfrac{24}{25}\)
(1-1/1x2)+(1-1/2x3)+...+1/(1-1/1994x1995)+(1-1/1995x1996)
1+1=
1x2=
so sánh 1+1 và 1x2
1 + 1 = 2
1 x 2 = 2
Ta có: 2 = 2
=> 1 + 1 = 1 x 2
1 + 1 =2
1 x 2 = 2
Vậy 1 + 1 = 1 x 2
MAGICPENCIL
HÃY LUÔN :-)
6)chứng tỏ
a)1/1x2+1/2x3+...+1/9x10 <1
b)1/1x2+1/2x3+...+1/99x100 <1
a)4/1x5+1/5x9+1/9x13+1/13x17+1/17x21<1
Lưu ý:"x" là phép nhân
)chứng tỏ
a)1/1x2+1/2x3+...+1/9x10 <1
b)1/1x2+1/2x3+...+1/99x100 <1
a)4/1x5+1/5x9+1/9x13+1/13x17+1/17x21<1
Lưu ý:"x" là phép nhân
Toán lớp 6
ái tích mình tíc lại nhà
CÂU a đề bài nó sao sao đó
mà gợi ý cho bạn ....bạn tính tổng đó ra bao nhiêu rồi đem so sánh cho 1
(1-1/2)(1-1/3)(1-1/4)….(1-1/2002).x=1-1/1x2-1/2x3-1/3x4-...1/2002x2003
(1-1/2)(1-1/3)(1-1/4)….(1-1/2002).x=1-1/1x2-1/2x3-1/3x4-...1/2002x2003 ae ghi lời giải jup mình nhé. Tìm x
Gọi \(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)....\left(1-\frac{1}{2002}\right).x\)
\(\Rightarrow A=\frac{1}{2}.\frac{2}{3}....\frac{2001}{2002}.x=\frac{x}{2002}\)
Gọi \(B=1-\frac{1}{1.2}-\frac{1}{2.3}-...-\frac{1}{2002.2003}\)
=>\(B=1-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2002.2003}\right)\)
\(\Rightarrow B=1-\left(1-\frac{1}{2003}\right)=1-\frac{2002}{2003}=\frac{1}{2003}\)
\(\Rightarrow\frac{x}{2002}=\frac{1}{2003}\Rightarrow x=\frac{2002}{2003}\)
a) \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{2006.2007}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2006}-\frac{1}{2007}\)
\(=1-\frac{1}{2007}\)
\(=\frac{2006}{2007}\)
tính:
(1-1/1x2)+(1-1/2x3)+...+1/(1-1/1994x1995)+(1-1/1995x1996)
1/`1x2 + 1/2x3+...+ 1/Xx [ X+1] = 1/2
\(\dfrac{1}{1\times2}\) + \(\dfrac{1}{2\times3}\) + ...+ \(\dfrac{1}{x\times\left(x+1\right)}\) = \(\dfrac{1}{2}\)
\(\dfrac{1}{1}\) - \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) +...+ \(\dfrac{1}{x}\) - \(\dfrac{1}{x+1}\) = \(\dfrac{1}{2}\)
1 - \(\dfrac{1}{x+1}\) = \(\dfrac{1}{2}\)
\(\dfrac{1}{x+1}\) = 1 - \(\dfrac{1}{2}\)
\(\dfrac{1}{x+1}\) = \(\dfrac{1}{2}\)
\(x+1\) = 1 : \(\dfrac{1}{2}\)
\(x\) + 1 = 2
\(x\) = 2 - 1
\(x\) = 1
1/1x2 + 1/2x3 +1/3x4 +1/4x5 +1/5x6
1/1x2 + 1/2x3 + 1/3x4 +1/4x5 +1/5x6
= 1 -1/2 + 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + 1/5 - 1/6
= 1 - 1/6 = 5/6