Hai số phức z, w được biểu diễn bởi hai điểm A, B và z 2 - z w + w 2 = 0 . Biết diện tích ∆ OAB bằng 3 thì |z| bằng bao nhiêu?
A. |z| = 1
B. |z| = 3
C. |z| = 3 2
D. |z| = 2
Cho hai số phức z và w z ≠ 0, w ≠ 0 . Biết z − w = z + w . Khi đó điểm biểu diễn số phức z w
A. thuộc trục Ox
B. thuộc đường phân giác của góc phần tư thứ nhất và thứ ba.
C. thuộc trục Oy
D. thuộc đường phân giác của góc phần tư thứ hai và thứ tư
Đáp án C
Đặt z = x + y i ; w = a + b i , x ; y ; a ; b ∈ ℝ
z − w = z + w ⇔ x + y i − a − b i = x + y i + a + b i
⇔ x − a 2 + y − b 2 = x + a 2 + y + b 2 ⇔ a x + b y = 0
Mặt khác
z w = x + y i a + b i = x + y i a − b i a 2 + b 2 = − a y + b x i a 2 + b 2
Suy ra z w là một số thuần ảo, vậy điểm biểu diễn số phức z w thuộc trục Oy
Cho hai số phức z và w z ≠ 0 , w ≠ 0 . Biết z − w = z + w . Khi đó điểm biểu diễn số phức z w
A. thuộc trục Ox.
B. thuộc đường phân giác của góc phần tư thứ nhất và thứ ba.
C. thuộc trục Oy.
D. thuộc đường phân giác của góc phần tư thứ hai và thứ tư.
Cho z, w là 2 số phức được biểu diễn bởi hai điểm đối xứng nhau qua trục Oy. Biết z = 1 + 2i. Tìm w
A. w = 1-2i
B. w = -1+2i
C. w = 2 + i
D. w = 2 - i
Biết số phức z, w được biểu diễn bởi các điểm M, N và w = z 1 - i và chu vi ∆ OMN bằng 2. Tính |z|
A. |z| = 1
B. |z| = 2
C. |z| = 2- 2
D. |z| = 2 -1
Biết số phức z ≠ 0 và w = z 1 - i . Biết A,B là các điểm biểu diễn của z,w thì:
A. ∆ ABO đều
B. ∆ ABO vuông cân
C. O là trung điểm AB
D. ∆ ABO có một góc 30 0
Cho số phức z có phần thực và phần ảo đều khác 0. Khi đó số phức z và w= - z ¯ được biểu diễn hình học bởi 2 điểm M, N thì M và N:
A. Đối xứng qua gốc O
B. Đối xứng qua Oy
C. Đối xứng qua Ox
D. Cả A, B, C đều sai
Cho hai số phức w và z thỏa mãn w - 1 + 2 i = z . Biết tập hợp các điểm biểu diễn của số phức z là đường tròn tâm I(-2;3) bán kính r = 3. Tìm tập hợp các điểm biểu diễn của số phức
A. Là một đường thẳng song song trục tung
B. Là một đường thẳng không song song với trục tung
C. Là đường tròn, tọa độ tâm (-3;5) bán kính bằng 3 5
D. Là đường tròn, tọa độ tâm (-1;1) bán kính bằng 3
Ta có : w - 1 + 2 i = z ⇔ w = z + 1 - 2 i . Suy ra quỹ tích các điểm biểu diễn số phức w có được từ quỹ tích các điểm biểu diễn số phức z bằng cách thực hiện phép tịnh tiến theo v → = ( 1 ; - 2 ) . Do đó quỹ tích quỹ tích các điểm biểu diễn số phức w là đường tròn tâm (-1;1) bán kính bằng 3.
Đáp án D
z = -1 + i được biểu diễn bởi điểm M trong mặt phẳng Oxy. Biết điểm M' biểu diễn số phức w và M’ đối xứng với M qua đường thẳng: ∆ : x-y+1 = 0. Tìm w.
A. w = 0
B. w = 1-i
C. w = 1+i
D. w = -2+2i
Hai số phức z = -1+2i và w = -2+i được biểu diễn bởi hai điểm M, N thì M và N là hai điếm đối xứng nhau qua đường thẳng
A. x = 0
B. y = 0
C. y = x
D. y = -x