Thực hiện phép tính
(x-1)(x+2)(x-3)
Thực hiện phép tính x + 1 x + 2 : x + 2 x + 3 : x + 3 x + 1
Thực hiện phép tính: 1 ( x - 1 ) ( x - 2 ) + 2 ( x - 2 ) ( x - 3 ) - 3 ( x - 3 ) ( x - 1 )
V . CÁC PHÉP TOÁN VỀ PHÂN THỨC :
Bài 1 : Thực hiện các phép tính sau :
b) x+3/x-2+4+x/2-x
Bài 2 : Thức hiện các phép tính sau :
a) x+1/2x+6+2x+3/x2+3x
d) 3/2x2y +5/xy2 + x/y3
e) x/x-2y +x/x+2y + 4xy/4y2-x2
g) x+3/x+1 +2x-1/x-1 +x+5/X2-1 ;
Bài 1:
b: \(=\dfrac{x+3-4-x}{x-2}=\dfrac{-1}{x-2}\)
Bài 2:
a: \(=\dfrac{x+1}{2\left(x+3\right)}+\dfrac{2x+3}{x\left(x+3\right)}\)
\(=\dfrac{x^2+x+4x+6}{2x\left(x+3\right)}=\dfrac{x^2+5x+6}{2x\left(x+3\right)}=\dfrac{x+2}{2x}\)
d: \(=\dfrac{3}{2x^2y}+\dfrac{5}{xy^2}+\dfrac{x}{y^3}\)
\(=\dfrac{3y^2+10xy+2x^3}{2x^2y^3}\)
e: \(=\dfrac{x^2+2xy+x^2-2xy-4xy}{\left(x+2y\right)\left(x-2y\right)}=\dfrac{2x^2-4xy}{\left(x+2y\right)\cdot\left(x-2y\right)}=\dfrac{2x}{x+2y}\)
thực hiện phép tính (x-2)^2+(3-x)(x+1)
\(=x^2-4x+4-x^2+2x-3=-2x+1\)
Thực hiện phép tính:
(x - 2)2 + (3 - x)(x - 1)
Thực hiện phép tính
(x+2)^2-(x-3)(x+1)
\(\left(x+2\right)^2-\left(x-3\right)\left(x+1\right)=x^2+4x+4-\left(x^2+x-3x-3\right)=x^2+4x+4-x^2-x+3x+3=6x+7.\)
Thực hiện phép tính (x^3+4x^2+x-2):(x+1)
Thực hiện phép tính:
\(\dfrac{3}{x}-\dfrac{x}{x-1}-\dfrac{x^2}{x+1}-\dfrac{x^2-3}{x^3-x}\)
Nhận thấy \(x^3-x=x\left(x^2-1\right)=x\left(x-1\right)\left(x+1\right)\)
\(\dfrac{3}{x}-\dfrac{x}{x-1}-\dfrac{x^2}{x+1}-\dfrac{x^2-3}{x^3-x}\\ =\dfrac{3x^2-3-x^3-x^2-x^4+x^3-x^2+3}{x\left(x-1\right)\left(x+1\right)}\\ =\dfrac{-x^4+x^2}{x\left(x-1\right)\left(x+1\right)}=\dfrac{-x^2\left(x-1\right)\left(x+1\right)}{x\left(x-1\right)\left(x+1\right)}=-x\)
BT3: Thực hiện phép tính a, 3/ x-1 + 5/ x +1 - x/x^2-1
a: ĐKXĐ: \(x\notin\left\{1;-1\right\}\)
\(\dfrac{3}{x-1}+\dfrac{5}{x+1}-\dfrac{x}{x^2-1}\)
\(=\dfrac{3}{x-1}+\dfrac{5}{x+1}-\dfrac{x}{\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{3\left(x+1\right)+5\left(x-1\right)-x}{\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{3x+3+5x-5-x}{\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{7x-2}{\left(x-1\right)\left(x+1\right)}\)