Cho tứ giác ABCD có α là góc nhọn tạo bởi hai đường chéo chứng minh rằng S A B C D = 1/2.AC.BD.sin α .
Cho tứ giác ABCD gọi góc nhọn tạo bởi 2 đường chéo là α, diện tích của tứ giác là S. CMR: . \(S=\frac{1}{2}.AC.BD.\sin\alpha\)Từ đó suy ra diện tích của tứ giác có hai đường chéo vuông góc
Đố: Cho tứ giác ABCD có \(AC=m,BD=n\). Góc nhọn tạo bởi hai đường chéo bằng \(\alpha\). Chứng minh rằng:
\(S_{ABCD}=\frac{1}{2}mn\sin\alpha\). Từ đó hãy giải thích tại sao tứ giác có hai đường chéo vuông góc với nhau thì có diện tích bằng nửa tích hai đường chéo.
Có hình vẽ :
Dễ thấy SABCD = \(\frac{1}{2}\left(AH+CK\right).BD\)
mà lại có \(AH=AO.sin\alpha\) ; \(CK=OC.sin\alpha\)
=> SABCD = \(\frac{1}{2}\sin\alpha.AC.BD\)
Khi 2 đường chéo vuông góc với nhau thì
\(H\equiv O\equiv K\Rightarrow AH=AO=CK\)
hay \(sin\alpha=1\)
Khi đó \(S_{ABCD}=\frac{1}{2}mn\)(đpcm)
Chứng minh:
a, Diện tích của một tam giác bằng nửa tích của hai cạnh nhân với sin của góc nhọn tạo bởi các đường thẳng chứa hai cạnh ấy
b, Diện tích của tứ giác bất kỳ bằng nửa tích của hai đường chéo nhân với sin của góc nhọn tạo bởi hai đường chéo
a, Giả sử tam giác ABC có A ^ < 90 0 kẻ đường cáo BH. Ta có BH=AB.sin A ^
=> S ∆ A B C = 1 2 A C . B H = 1 2 A B . A C . sin A
b, Giả sử tứ giác ABCD có hai đường chéo AC và BD cắt nhau tại O có
A
O
B
^
=
α
<
90
0
. Kẻ AH
⊥
BD, tại H và CK
⊥
BD tại K
Ta có: AH = OA.sinα
=> S A B D = 1 2 B D . A H = 1 2 B D . O A . sin α
Tương tự: S C B D = 1 2 B D . C K = 1 2 B D . O C . sin α
=> S A B C D = S A B D + S C B D = 1 2 B D . O A . sin α + 1 2 B D . O C . sin α = 1 2 B D . A C . sin α
Cho tứ giác ABCD có \(\alpha\) là góc nhọn tạo bởi hai đường chéo.
Chứng minh rằng :
\(S_{ABCD}=\dfrac{1}{2}AC.BD.\sin\alpha\)
Câu 8. _NB_ Để chứng minh tứ giác ABCD là hình vuông, dấu hiệu nào sau đây là sai ? A. Tứ giác ABCD là hình thoi có hai đường chéo bằng nhau. B. Tứ giác ABCD là hình thoi có một góc vuông. C. Tứ giác ABCD là hình thoi có hai đường chéo vuông góc. D. Tứ giác ABCD là hình chữ nhật có hai cạnh kề bằng nhau
Trên mặt phẳng (α) cho hình vuông ABCD. Các tia Ax, By, Cz, Dt vuông góc với mặt phẳng (α) và nằm về một phía đối với mặt phẳng (α). Một mặt phẳng (β) lần lượt cắt Ax, By, Cz, Dt tại A', B', C', D'.
a) Tứ giác A', B', C', D' là hình gì? Chứng minh rằng .
b) Chứng minh rằng điều kiện để tứ giác A', B', C', D' là hình thoi là nó có hai đỉnh đối diện cách đều mặt phẳng (α).
c) Chứng minh rằng điều kiện để tứ giác A', B', C', D' là hình chữ nhật là nó có hai đỉnh kề nhau cách đều mặt phẳng (α).
a) Ta có hai mặt phẳng song song là: (Ax, AD) // (By, BC)
Hai mặt phẳng này bị cắt bởi mặt phẳng (β) nên ta suy ra các giao tuyến của chúng phải song song nghĩa là A′D′ // B′C′.
Tương tự ta chứng minh được A′B′ // D′C′. Vậy A', B', C', D' là hình bình hành. Các hình thang AA'C'C và BB'D'D đều có OO' là đường trung bình trong đó O là tâm của hình vuông ABCD và O' là tâm của hình bình hành A',B',C',D'. Do đó: AA′ + CC′ = BB′ + DD′ = 2OO′
b) Muốn hình bình hành A',B',C',D' là hình thoi ta cần phải có A'C' ⊥ B'D'. Ta đã có AC ⊥ BD. Người ta chứng minh được rằng hình chiếu vuông góc của một góc vuông là một góc vuông khi và chỉ khi góc vuông đem chiếu có ít nhất một cạnh song song với mặt phẳng chiếu hay nằm trong mặt chiếu. Vậy A', B', C', D' là hình thoi khi và chỉ khi A'C' hoặc B'D' song song với mặt phẳng (α) cho trước. Khi đó ta có AA' = CC' hoặc BB' = DD'.
c) Muốn hình bình hành A', B', C', D' là hình chữ nhật ta cần có A'B' ⊥ B'C', nghĩa là A'B' hoặc B'C' phải song song với mặt phẳng (α)(α). Khi đó ta có AA' = BB' hoặc BB' = CC', nghĩa là hình bình hành A', B', C', D' có hai đỉnh kề nhau cách đều mặt phẳng (α) cho trước.
Bài 1: Cho tứ giác ABCD. Chứng minh:
a) Tổng hai cạnh đối nhỏ hơn tổng hai đường chéo
b) Tổng hai đường chéo lớn hơn nửa chu vi nhưng nhỏ hơn chu vi của tứ giác ấy
Bài 2: Cho tứ giác ABCD có góc A=70 độ , góc D=80 độ và góc ngoài ở đỉnh C=60 độ
a) Tính góc B của tứ giác ABCD
b) Chứng minh rằng tổng hai đường chéo luôn lớn hơn tổng hai cạnh đối của tứ giác đó.
Bài 3: Tứ giác ABCD có góc C + góc D= 90 độ. Chứng minh rằng AC2+ BD2= AB2+ CD2
Mình đang rất cần các bài này. Các bạn giúp mình nhé. cảm ơn các bạn
Bài 1:
Gọi E là giao điểm của hai đường chéo AC và BD
Xét tam giác AEB ta có: AE + BE > AB (trong một tam giác tổng hai cạnh luôn lớn hơn cạnh còn lại)
Xét tam giác DEC ta có: DE + CE > DC (trong một tam giác tổng hai cạnh luôn lớn hơn cạnh còn lại)
Cộng vế với vế ta có: AE + BE + DE + CE > AB + DC
(AE + CE) + (BE + DE) > AB + DC
AC + BD > AB + DC
Tương tự ta có AC + BD > AD + BC
Kết luận: Trong một tứ giác tổng hai đường chéo luôn lớn hơn tổng hai cạnh đối.
Nửa chu vi của tứ giác ABCD là: \(\dfrac{AB+BC+CD+DA}{2}\)
Theo chứng minh trên ta có:
\(\dfrac{AB+BC+CD+DA}{2}\)< \(\dfrac{\left(AB+CD\right)\times2}{2}\) = AB + CD (1)
Vì trong một tam giác tổng hai cạnh bao giờ cũng lớn hơn cạnh còn lại nên ta có:
AB + AD > BD
AB + BC > AC
BC + CD > BD
CD + AD > AC
Cộng vế với vế ta có:
(AB + BC + CD + DA)\(\times\)2 > (BD + AC ) \(\times\) 2
⇒AB + BC + CD + DA > BD + AC (2)
Kết hợp (1) và (2) ta có:
Tổng hai đường chéo của tứ giác lớn hơn nửa chu vi của tứ giác nhưng nhỏ hơn chu vi của tứ giác
Bài : 2 Góc C = 1800 - 600 = 1200
Tổng bốn góc của tứ giác là 3600
Ta có: Góc B của tứ giác ABCD là:
3600 - (700 + 800 + 1200) = 900
Câu b chứng minh như bài 1
Bài 1:
a) Sử dụng tính chất tổng hai cạnh trong một tam giác thì lớn hơn cạnh còn lại cho các tam giác OAB, OBC,OCD và ODA.
b) Chứng minh tổng hai đường chéo lớn hơn nửa chu vi tứ giác sử dụng kết quả của a).
Chứng minh tổng hai đường chéo nhỏ hơn chu vi tứ giác sử dụng tính chất tổng hai cạnh trong một tam giác thì lớn hơn cạnh còn lại cho các tam giác ABC, ADC, ABD và CBD
Bài 3:
Gọi O là giao điểm AD và BC.
Ta có nên
Áp dụng định lí Py – ta – go,
Ta có
Nên
Bài 1: Cho tứ giác ABCD. Chứng minh:
a) Tổng hai cạnh đối nhỏ hơn tổng hai đường chéo
b) Tổng hai đường chéo lớn hơn nửa chu vi nhưng nhỏ hơn chu vi của tứ giác ấy
Bài 2: Cho tứ giác ABCD có góc A=70 độ , góc D=80 độ và góc ngoài ở đỉnh C=60 độ
a) Tính góc B của tứ giác ABCD
b) Chứng minh rằng tổng hai đường chéo luôn lớn hơn tổng hai cạnh đối của tứ giác đó.
Bài 3: Tứ giác ABCD có góc C + góc D= 90 độ. Chứng minh rằng AC2+ BD2= AB2+ CD2
Mình đang rất cần các bài này. Các bạn giúp mình nhé. cảm ơn các bạn
Cho tứ giác abcd có góc a=góc c=90 độ gọi b',d' lần lượt là hình chiếu của b,d trên đường chéo ac. chứng minh rằng ab'=cd'